Facial Image-based Age Estimation

Matthias Steiner | December 9, 2010

Institute for Anthropomatics, Facial Image Processing and analysis

KIT - University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Outline

(1) Introduction
(2) Theoretical Background

- Active Appearance Model
- Support Vector Machine I
(3) Former Studies
- Age Estimation System
- Evaluation

4 Current Studies

- Age Estimation
- Evaluation
(5) Conclusion

Introduction

Karlsruhe Institute of Technology
The face is an important indicator of a person's age
Sample applications

- Observation of age restrictions
- Age adapted user interfaces
- Simulation of the aging process

Challenges

- Every person ages differently

- Collecting sufficient amount of training data
- Influence of facial expressions, head pose, gender and ethnicity

Active Appearance Model I

Basics

- Objective: Describe a face with a set of parameters
- Idea: Parameters describe the differences from the mean face
\Rightarrow A statistical model of the variation of shape and texture is learned
\Rightarrow Training images with the annotated shape are needed

1. Shape model

- PCA is applied to all shapes
\Rightarrow Orthogonal modes of variation P_{s}
\Rightarrow Shape Model: $s=\bar{s}+P_{s} b_{s}$

Active Appearance Model II

2. Texture model

- Mean shape is used to warp every face into a shape free version

- The texture is normalized in the shape area
- PCA is applied to all warped textures
\Rightarrow Texture Model: $t=\bar{t}+P_{t} b_{t}$

3. Combined model

- The shape and texture vector are concatenated: $b=\binom{W_{s} b_{s}}{b_{t}}$
- A third time PCA is applied to these vectors
\Rightarrow Combined Model: $b=Q b_{c}$

Support Vector Machine I

Basic Problem
$d=\left\{\left(x_{i}, y_{i}\right) \mid x_{i} \in \mathbb{R}^{m}, y_{i} \in\{-1,+1\}\right\}$
Objective
Find a optimal hyperplane between the these classes
\Rightarrow Lowest separation error and the best generalization

Support Vector Machine II

Approach

- Hyperplane: $\langle w, x\rangle+b=0$
- Scale parameters to fulfill $|\langle w, x\rangle+b| \geq 1$
\Rightarrow Points closest $|\langle w, x\rangle+b|=1$ on h_{1}, h_{2}
\Rightarrow Maximize distance $h_{1}, h_{2}: \frac{2}{\|w\|}$

Basic Optimization Problem
$\Rightarrow \min _{w, b}\|w\|$ s.t. $y_{i} *\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1, \forall i$

Support Vector Machine Extensions I

The Kernel-Trick

- The non-linear separable data is transformed into a higher dimensional space
\Rightarrow Complex calculation of the scalar product
\Rightarrow Replace the scalar product with a kernel function
- polynomial, radial basis function (RBF),...

Support Vector Machine Extensions II

Soft Margin

- Allows to regulate between separation error and generalization

$$
\min _{w, b, \xi}\|w\|+C \sum_{i=1}^{n} \xi_{i} \text { s.t. } y_{i} *\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1-\xi_{i}, \forall i, \xi_{i} \geq 0
$$

Support Vector Machine Extensions III

(epsilon) SV-Regression

- y_{i} can be any real number \Rightarrow regression problem
- Find a function that has at most ϵ deviation

$$
\min _{w, b}\|w\| \text { s.t. } \begin{cases}y_{i}-\left\langle w, x_{i}\right\rangle-b & \leq \epsilon \\ \left\langle w, x_{i}\right\rangle+b-y_{i} & \leq \epsilon \\ \forall i & \geq 0\end{cases}
$$

AAM Building I

Configuration

- Convex hull model
- 95% of the variation is described
- The texture size is halved

Variation of the first 2 parameters

AAM Building II

Variation of the parameters 3-5

Former Studies
000000000000

Current Studies
00000000

Conclusion

AAM Fitting

Current Studies
00000000

Classification System

Karlsruhe Institute of Technology

The classifier

$$
\text { youth } \widehat{=} \text { age } \leq 20, \text { adult } \widehat{=} \text { age }>20
$$

The FG-NET database

- 1002 mixed color and greyscale images
- 68 landmark points for every sample
- 6-18 images for each of the 82 subjects (age: 0-69)
- Image resolution varies about 400×500 pixels
- Uncontrolled conditions
- Ethnicity: White people

Evaluation Method

Leave One Person Out Evaluation (LOPO)

In each fold:

- The pictures of one person are hold out for testing
- All remaining images are used for training
\Rightarrow On the FG-NET database this leads to 82 folds
- Training set: AAM building \rightarrow feature extraction \rightarrow SVM training
- Testing set: feature extraction \rightarrow age estimation

Parameter optimization

- Cross validation: The subjects instead of the single images are randomly divided into training and testing set
\Rightarrow Prevents that "intra personal" relations are learned

Performance Measurements

Mean Absolute Error (MAE)

- is the mean difference between the real and the predicted age

$$
M A E=\frac{\sum_{i=0}^{n}\left|E A_{i}-R A_{i}\right|}{n}
$$

- where $E A_{i}$ is the estimated and $R A_{j}$ the real age for the $i^{\text {th }}$ of n tested samples

Cumulative Score (CS)

- Let d an age error in years
- CS is \% of estimations having an estimation error $\leq d$

$$
C S(d)=\frac{N\left|E A_{i}-R A_{i}\right| \leq d}{n} \times 100
$$

Baseline Version Evaluation I

Mean Absolute Error

For the MAE calculation of the second step classifiers the miss classifications of the first step are ignored

features used	dim.	overall result	first step	second step	
			youth/adult classifier	youth classifier	adult classifier
shape only	27	6.16	20.44\%	2.32	7.77
texture only	102	5.84	19.24\%	2.15	7.55
shape \& texture	129	5.71	18.84\%	2.16	7.55
combined	47	5.58	18.50\%	2.11	7.56

Baseline Version Evaluation II

Karlsruhe Institute of Technology

Cumulative Score

DCT Features Approach

Alignment Version

1. Use the eye coordinates to align the face

2. Fit the AAM to get the shape free face

Extraction

1. Scale image to 64×64 pixels
2. DCT is performed on blocks of 8×8 pixels
3. 5 coefficients in zig-zag order are kept for each block
$\Rightarrow 8 \times 8 \times 5=320$ dimensional feature vector

DCT Features Evaluation

Mean Absolute Error

features used	dim.	$\begin{array}{c}\text { overall } \\ \text { result }\end{array}$	$\begin{array}{c}\text { first step } \\ \\ \end{array}$	$\begin{array}{c}\text { youth/adult } \\ \text { classifier }\end{array}$	$\begin{array}{c}\text { youth } \\ \text { classifier }\end{array}$
			18.50%	2.11	7.56
classifier				$]$	

Soft Binary Approach

- Use the decision value to identify close decisions
\Rightarrow Close decisions are given to a global classifier (overall MAE: combined: 5.50 years, DCT v2 \& shape: 5.08 years)

- combined: 5.21 years (before 5.58), (youth/adult error 5.69\%)
- DCT v2 \& shape: 4.77 years (before 5.08), (youth/adult error 4.59\%)

Final Evaluation

Age Range Analyses

- Estimations are grouped according to their real age

features used	$0-9$ MAE	$10-19$ MAE	$20-29$ MAE	$30-39$ MAE	$40-49$ MAE	$50-59$ MAE	$60-69$ MAE
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.3
combined(sb)	2.41	3.88	5.78	9.92	15.83	25.64	35.46
DCT\&shape	1.99	4.04	7.12	9.37	13.62	21.79	28.66
DCT\&shape(sb)	2.19	3.67	4.97	9.10	15.09	22.60	32.13
image count	371	339	144	79	46	15	8

- Upper age ranges are trained badly
- Classifier prefers ages with many samples
\Rightarrow The estimation performance varies widely

Current Studies

Objective:

- Build a balanced age estimation system

Approach:

- Balance the number of images per age
\Rightarrow Add data from the MORPH database
\Rightarrow Use flipped images
\Rightarrow Limit images per age
- AAM fitting is complex
\Rightarrow Use eye alignment only (DCT v1)
- The youth/adult classification influences the MAE of the age ranges
\Rightarrow Drop the youth/adult classification step

The MORPH database

Album 1

- 1690 greyscale images
- eye coordinates for every sample
- 631 subjects of the age from 15-68
- Image resolution: 400×500 pixels
- Ethnicity: black 1253 images white 434 images

The MORPH database

Album 2

- 55608 color images
- 13673 subjects of the age from 16-99
- Image resolution: 200 $\times 240-400 \times 480$ pixels
- Ethnicity: black 42897 images white 10736 images
- No eye coordinates
\Rightarrow MCT detector of the okapi library is used

Evaluation Set

Age Distribution FG-NET \& MORPH

Evaluation I

FG-NET MAE Age Range Analysis

training age limit	$\begin{gathered} 0-9 \\ \text { MAE } \end{gathered}$	$\begin{aligned} & \text { 10-19 } \\ & \text { MAE } \end{aligned}$	$\begin{aligned} & \text { 20-29 } \\ & \text { MAE } \end{aligned}$	$\begin{aligned} & \text { 30-39 } \\ & \text { MAE } \end{aligned}$	$\begin{aligned} & 40-49 \\ & \text { MAE } \end{aligned}$	$\begin{aligned} & \text { 50-59 } \\ & \text { MAE } \end{aligned}$	$\begin{aligned} & \text { 60-69 } \\ & \text { MAE } \end{aligned}$	overall MAE
30	7.93	6.44	4.94	8.73	13.87	25.47	27.38	7.75
50	6.84	5.68	4.80	10.00	14.76	27.07	29.00	7.25
70	6.51	5.33	4.81	9.98	14.87	27.73	30.25	6.99
\#images	371	339	144	79	46	15	8	1002

Evaluation II

Album 1 MAE Age Range Analysis

training age limit	$0-9$ MAE	$10-19$ MAE	$20-29$ MAE	$30-39$ MAE	$40-49$ MAE	$50-59$ MAE	$60-69$ MAE	overall MAE
30	-	12.31	8.81	5.37	6.87	12.8	16.71	8.60
50	-	9.50	6.76	4.64	7.40	13.48	19.29	6.98
70	-	7.90	5.67	4.74	7.94	13.92	20.14	6.24
\#images	0	343	763	428	124	25	7	1690

Evaluation III

MAE Age Range Analysis

- Testing samples are collected from the whole evaluation set
- Testing samples per age are limited to 50

training age limit	$0-9$ MAE	$10-19$ MAE	$20-29$ MAE	$30-39$ MAE	$40-49$ MAE	$50-59$ MAE	$60-69$ MAE
30	8.19	7.03	6.56	6.21	7.19	6.47	10.69
50	7.14	6.12	5.33	5.76	6.70	6.71	10.81
70	6.78	5.67	4.65	5.78	6.63	6.86	11.05

Evaluation IV

Karlsruhe Institute of Technology

Cumulative Scores

Conclusion

- On the FG-NET database a human reaches the following MAE:
- Whole picture: 6.23 years
- Face only: 8.13 years
- Our best results: 4.77 years
\Rightarrow AAM or DCT combined with SVM is suited for age estimation
- The youth/adult classification is very challenging
\Rightarrow Using DCT features slightly reduces the classification error
- An age balanced training set provides a quite balanced age estimation
- Ethnicity should probably be considered

Questions?

Questions?

References

T. T.F.Cootes, G.J. Edwards and C.J.Taylor, Active Appearance Models, in Proc. European Conference on Computer Vision, Vol. 2, pp. 484-498, 1998.
(V. Vapnik, A. Lerner Pattern recognition using generalized portrait method, Automation and Remote Control, vol. 24, pp. 774-780, 1963.
B. Stegmann, The AAM-API, http://www2.imm.dtu.dk/~aam/.

國 Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines,
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.
Xin Geng, Thi-Hua Thou, Yu Thang, Gang Li, Honghui Dai, Learning from Facial Aging Patterns for Automatic Age Estimation, In Proc. of 14th ACM Int'I Conf. Multimedia, pp. 307-316, 2006.

Principal Component Analysis (PCA)

1. Direction of the greatest variance is detected
2. The basis is changed
3. The dimension is reduced

Example:

Implementation Additionals I

Training:
1 All samples to train the youth/adult classifier
2a Samples with age ≤ 20 to train the youth classifier
2b Samples with age >20 to train the adult classifier
SVM type:

1. Support Vector Classification for the first step classifier
\rightarrow CSVC with the RBF kernel from the LIBSVM library
2. Support Vector Regression for the second steps classifiers
\rightarrow Epsilon-SVR with the RBF kernel also from LIBSVM

Implementation Additionals II

Building procedure

1. Build the AAM on the training set
2. Extract the feature vectors for all training images
3. Scale the parameters of the feature vectors to $\{-1,1\}$
4. Train the three classifiers using the respective data and optimize the SVM parameters using a 5 fold cross validation

Implementation Additionals III

Estimation procedure

1. Extract the feature vectors for all testing images
2. Scale the feature vectors
3. Estimate the age by applying the two steps of classifiers

AAM Fitting

Algorithm

1. Start the fitting with the mean or landmark shape
2. Calculate the initial error between synthesized and real face Mahalanobis distance
3. Compute the next displacement using a regression matrix
4. Estimate the new combined vector with step size 1
5. Calculate the new error
a Accept the estimation if the error has improved
b Otherwise go to step 4 and try a smaller step
6. Go to step 3 until the error is not further reduced or the maximum of iterations is reached

Basic Version Evaluation IV

MAE age range analysis
All estimations are grouped according to their real age

features used	$0-9$ MAE	$10-19$ MAE	$20-29$ MAE	$30-39$ MAE	$40-49$ MAE	$50-59$ MAE	$60-69$ MAE
shape only	2.77	6.19	7.61	8.18	14.13	23.27	33.50
texture only	2.73	5.65	7.22	8.17	14.15	23.28	34.79
shape \& tex	2.52	5.54	7.08	8.03	13.83	23.15	34.00
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.30
image count	371	339	144	79	46	15	8

Baseline Version Evaluation IV

Errors of the youth/adult classifier

Baseline Version Evaluation V

Large estimation errors of the youth classifier

Baseline Version Evaluation VI

Large estimation errors of the adult classifier

DCT Features Evaluation II

Cumulative Score

Global Classifier Approach

Background

Without any youth/adult error the overall MAE would be:

- Combined feature vector: 3.74 years
- DCT \& shape feature vector concatenated: 3.7 years
\Rightarrow Idea: Get rid of the youth/adult classification
\Rightarrow Only one global classifier (SVR) for the whole age range 0-69

Global Classifier Approach Evaluation

Overall MAE

- Combined: 5.50 years (before 5.58)
- DCT \& Shape: 5.08 years (before 5.08)

Age range analyses

features used	$0-9$ MAE	$10-19$ MAE	$20-29$ MAE	$30-39$ MAE	$40-49$ MAE	$50-59$ MAE	$60-69$ MAE
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.30
combined(G)	3.12	3.58	4.96	10.85	18.32	27.75	38.46
DCT\&shape	1.99	4.04	7.12	9.37	13.62	21.79	28.66
DCT\&shape(G)	3.09	3.69	3.80	8.89	16.76	24.89	35.38
image count	371	339	144	79	46	15	8

Soft Binary Evaluation

Overall MAE

- Combined: 5.21 years (before 5.58), (youth/adult error 5.69\%)
- DCT \& Shape: 4.77 years (before 5.08), (youth/adult error 4.59%)

Age range analyses

features used	$0-9$ MAE	$10-19$ MAE	$20-29$ MAE	$30-39$ MAE	$40-49$ MAE	$50-59$ MAE	$60-69$ MAE
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.3
combined(sb)	2.41	3.88	5.78	9.92	15.83	25.64	35.46
DCT\&shape	1.99	4.04	7.12	9.37	13.62	21.79	28.66
DCT\&shape(sb)	2.19	3.67	4.97	9.10	15.09	22.60	32.13
image count	371	339	144	79	46	15	8

Automatic Initialized Fitting Approach

Problem and Solution

- In real life there are no landmarks to initialize the AAM fitting
- Worst Solution: Try any possible size and position
- Better Solution: Use the MCT detector for face and eye detection

Example

Automatic Initialized Fitting Evaluation

Mean Absolute Error

The face and eyes detection failed for 185 images
\Rightarrow They are excluded from testing

features used		first step	second step	
		youth/adult classifier	youth classifier	adult classifier
combined landmark	4.87	5.27	2.07	7.23
combined automatic	6.47	9.49	2.91	7.40
DCT v1 landmark	5.08	5.21	2.56	7.35
DCT v1 automatic	7.04	10.04	3.96	7.77
DCT v2 \& shape landmark	4.43	5.08	2.14	7.34
DCT v2 \& shape automatic	5.67	9.14	2.73	7.61

