

Facial Image-based Age Estimation

Matthias Steiner | December 9, 2010

INSTITUTE FOR ANTHROPOMATICS, FACIAL IMAGE PROCESSING AND ANALYSIS

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

Outline

Introduction

- 2 Theoretical Background
 - Active Appearance Model
 - Support Vector Machine I
- 3 Former Studies
 - Age Estimation System
 - Evaluation
- 4 Current Studies
 - Age Estimation

Matthias Steiner - Facial Image-based Age Estimation

Evaluation

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

э

December 9, 2010

Introduction

The face is an important indicator of a person's age

Sample applications

- Observation of age restrictions
- Age adapted user interfaces
- Simulation of the aging process

Challenges

Every person ages differently

- Collecting sufficient amount of training data
- Influence of facial expressions, head pose, gender and ethnicity

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

Active Appearance Model I

Basics

- Objective: Describe a face with a set of parameters
- Idea: Parameters describe the differences from the mean face
- \Rightarrow A statistical model of the variation of shape and texture is learned
- \Rightarrow Training images with the annotated shape are needed

1. Shape model

- PCA is applied to all shapes
- \Rightarrow Orthogonal modes of variation P_s
- \Rightarrow Shape Model: $s = \overline{s} + P_s b_s$

Matthias Steiner - Facial Image-based Age Estimation

Introduction

Theoretical Background

Former Studies

Current Studies

E ∽ ९ . Conclusion

December 9, 2010

Active Appearance Model II

2. Texture model

Mean shape is used to warp every face into a shape free version

- The texture is normalized in the shape area
- PCA is applied to all warped textures
- \Rightarrow Texture Model: $t = \overline{t} + P_t b_t$

3. Combined model

- The shape and texture vector are concatenated: $b = \begin{pmatrix} W_s b_s \\ b_t \end{pmatrix}$
- A third time PCA is applied to these vectors
- \Rightarrow Combined Model: $b = Qb_c$

Matthias Steiner - Facial Image-based Age Estimation

Introduction

Theoretical Background

Former Studies

Current Studies

Conclusion

-

December 9, 2010

Support Vector Machine I

Basic Problem

 $d = \{(x_i, y_i) | x_i \in \mathbb{R}^m, y_i \in \{-1, +1\}\}$

Objective

Find a optimal hyperplane between the these classes

 \Rightarrow Lowest separation error and the best generalization

Introduction

Theoretical Background

Former Studies

Current Studies

Conclusion

Matthias Steiner – Facial Image-based Age Estimation

December 9, 2010

Theoretical Background 0000000

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies

Conclusion

December 9, 2010

イロト イポト イヨト イヨト

7/49

$$\Rightarrow \min_{w,b} \|w\| \text{ s.t. } y_i * (\langle w, x_i \rangle + b) \ge 1, \forall i$$

Basic Optimization Problem

- Scale parameters to fulfill $|\langle w, x \rangle + b| \ge 1$
- Points closest $|\langle w, x \rangle + b| = 1$ on h_1, h_2 \Rightarrow
- \Rightarrow Maximize distance $h_1, h_2 : \frac{2}{\|w\|}$

• Hyperplane: $\langle w, x \rangle + b = 0$

Support Vector Machine II

Approach

Introduction

Support Vector Machine Extensions I

The Kernel-Trick

- The non-linear separable data is transformed into a higher dimensional space
- ⇒ Complex calculation of the scalar product
- \Rightarrow Replace the scalar product with a kernel function
 - polynomial, radial basis function (RBF),...

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

► < ☐ ► < ≣ Current Studies 00000000

Conclusion

December 9, 2010

Support Vector Machine Extensions II

Soft Margin

Allows to regulate between separation error and generalization

$$\min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{\xi}} \|\boldsymbol{w}\| + C \sum_{i=1}^{n} \xi_i \text{ s.t. } \boldsymbol{y}_i * (\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + \boldsymbol{b}) \geq 1 - \xi_i, \forall i, \xi_i \geq 0$$

Introduction

Theoretical Background

Former Studies

Current Studies

Conclusion

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

Support Vector Machine Extensions III

(epsilon) SV-Regression

- y_i can be any real number \Rightarrow regression problem
- Find a function that has at most ϵ deviation

$$\min_{w,b} \|w\| \text{ s.t. } \begin{cases} y_i - \langle w, x_i \rangle - b &\leq \epsilon \\ \langle w, x_i \rangle + b - y_i &\leq \epsilon \\ \forall i &\geq 0 \end{cases}$$

Introduction

Theoretical Background

Former Studies

► < ☐ ► < Ξ</p>
Current Studies
00000000

Conclusion

AAM Building I

Configuration

- Convex hull model
- 95% of the variation is described
- The texture size is halved

Variation of the first 2 parameters

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies

Conclusion

December 9, 2010

AAM Building II

Variation of the parameters 3-5

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies

Conclusion

December 9, 2010

AAM Fitting

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

э

December 9, 2010

13/49

Classification System

The classifier

youth $\widehat{=}$ age ${\leq}20$, adult $\widehat{=}$ age ${>}20$

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

ъ

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

The FG-NET database

- 1002 mixed color and greyscale images
- 68 landmark points for every sample
- 6-18 images for each of the 82 subjects (age: 0-69)
- Image resolution varies about 400 × 500 pixels
- Uncontrolled conditions
- Ethnicity: White people

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

э

December 9, 2010

15/49

Evaluation Method

Leave One Person Out Evaluation (LOPO)

In each fold:

- The pictures of one person are hold out for testing
- All remaining images are used for training
- \Rightarrow On the FG-NET database this leads to 82 folds
 - \blacksquare Training set: AAM building \rightarrow feature extraction \rightarrow SVM training
 - Testing set: feature extraction \rightarrow age estimation

Parameter optimization

Matthias Steiner - Facial Image-based Age Estimation

- Cross validation: The subjects instead of the single images are randomly divided into training and testing set
- \Rightarrow Prevents that "intra personal" relations are learned

Introduction

Theoretical Background

Former Studies

Current Studies

イロン 人間 とくほ とくほ とう

E ∽ ९ . Conclusion

December 9, 2010

Performance Measurements

Mean Absolute Error (MAE)

• is the mean difference between the real and the predicted age

$$MAE = rac{\sum_{i=0}^{n} |EA_i - RA_i|}{n}$$

where *EA_i* is the estimated and *RA_i* the real age for the *ith* of *n* tested samples

Cumulative Score (CS)

- Let *d* an age error in years
- CS is % of estimations having an estimation error ≤ *d*

$$CS(d) = rac{N|EA_i - RA_i|_{\leq d}}{n} imes 100$$

Introduction

Theoretical Background

Former Studies

Current Studies

E ∽ へ へ
Conclusion

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

Mean Absolute Error

For the MAE calculation of the second step classifiers the miss classifications of the first step are ignored

			first step	secon	d step
features used	dim.	overall	youth/adult	youth	adult
		result	classifier	classifier	classifier
shape only	27	6.16	20.44%	2.32	7.77
texture only	102	5.84	19.24%	2.15	7.55
shape & texture	129	5.71	18.84%	2.16	7.55
combined	47	5.58	18.50%	2.11	7.56

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

э.

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

Baseline Version Evaluation II

Cumulative Score

age difference (years)

Introduction

Theoretical Background

Former Studies

Current Studies

< A

Conclusion

Matthias Steiner – Facial Image-based Age Estimation

December 9, 2010

DCT Features Approach

Alignment Version

1. Use the eye coordinates to align the face

2. Fit the AAM to get the shape free face

Extraction

- 1. Scale image to 64×64 pixels
- 2. DCT is performed on blocks of 8×8 pixels
- 3. 5 coefficients in zig-zag order are kept for each block

 \Rightarrow 8 \times 8 \times 5 = 320 dimensional feature vector

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

-

December 9, 2010

DCT Features Evaluation

Mean Absolute Error

			first step	second step		
features used	dim.	overall	youth/adult	youth	adult	
		result	classifier	classifier	classifier	
combined	47	5.58	18.50%	2.11	7.56	
DCT v1	320	5.91	17.42%	2.75	7.85	
DCT v2	320	5.55	17.61%	2.48	7.78	
DCT v2 & shape	347	5.08	15.65%	2.19	7.80	

Introduction

Theoretical Background

Former Studies

Current Studies

Conclusion

э.

Matthias Steiner – Facial Image-based Age Estimation

December 9, 2010

Soft Binary Approach

-

イロン 不得 とくほ とくほ とう

- Use the decision value to identify close decisions
- ⇒ Close decisions are given to a global classifier (overall MAE: combined: 5.50 years, DCT v2 & shape: 5.08 years)

combined: 5.21 years (before 5.58), (youth/adult error 5.69%)

DCT v2 & shape: 4.77 years (before 5.08), (youth/adult error 4.59%)

Introduction	Theoretical Background	Former Studies	Current Studies	Conclusion
Matthias Steiner - Facia	Image-based Age Estimation		December 9, 2010	22/49

Final Evaluation

Age Range Analyses

Estimations are grouped according to their real age

features used	0-9	10-19	20-29	30-39	40-49	50-59	60-69
	MAE	MAE	MAE	MAE	MAE	MAE	MAE
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.3
combined(sb)	2.41	3.88	5.78	9.92	15.83	25.64	35.46
DCT&shape	1.99	4.04	7.12	9.37	13.62	21.79	28.66
DCT&shape(sb)	2.19	3.67	4.97	9.10	15.09	22.60	32.13
image count	371	339	144	79	46	15	8

- Upper age ranges are trained badly
- Classifier prefers ages with many samples
 - \Rightarrow The estimation performance varies widely

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies

Conclusion

-

December 9, 2010

イロト イポト イヨト イヨト

Current Studies

Objective:

Build a balanced age estimation system

Approach:

- Balance the number of images per age
 - \Rightarrow Add data from the MORPH database
 - \Rightarrow Use flipped images
 - ⇒ Limit images per age
- AAM fitting is complex

Matthias Steiner - Facial Image-based Age Estimation

- \Rightarrow Use eye alignment only (DCT v1)
- The youth/adult classification influences the MAE of the age ranges
 - \Rightarrow Drop the youth/adult classification step

Introduction

Theoretical Background

Former Studies

Current Studies ••••••• December 9, 2010

・ロ・ ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

E ∽ ९ . Conclusion

The MORPH database

Album 1

- 1690 greyscale images
- eye coordinates for every sample
- 631 subjects of the age from 15-68
- Image resolution: 400 × 500 pixels
- Ethnicity: black 1253 images white 434 images

Introduction

Theoretical Background

Former Studies

Current Studies •••••• December 9, 2010

イロト イポト イヨト イヨト

Conclusion

25/49

The MORPH database

Album 2

- 55608 color images
- 13673 subjects of the age from 16-99
- Image resolution: 200 × 240 400 × 480 pixels
- Ethnicity: black 42897 images white 10736 images
- No eye coordinates
 - \Rightarrow MCT detector of the okapi library is used

Introduction

Theoretical Background

Former Studies

Current Studies 0000000 December 9, 2010

イロン イボン イヨン イヨン

Conclusion

26/49

Age Distribution FG-NET & MORPH

Introduction

Theoretical Background

Former Studies

Current Studies 0000000 December 9, 2010

Conclusion

. ⊒ →

27/49

Evaluation I

FG-NET MAE Age Range Analysis

training	0-9	10-19	20-29	30-39	40-49	50-59	60-69	overall
age limit	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE
30	7.93	6.44	4.94	8.73	13.87	25.47	27.38	7.75
50	6.84	5.68	4.80	10.00	14.76	27.07	29.00	7.25
70	6.51	5.33	4.81	9.98	14.87	27.73	30.25	6.99
#images	371	339	144	79	46	15	8	1002

Introduction

Theoretical Background

Former Studies

Conclusion

э

28/49

Evaluation II

Album 1 MAE Age Range Analysis

training	0-9	10-19	20-29	30-39	40-49	50-59	60-69	overall
age limit	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE
30	-	12.31	8.81	5.37	6.87	12.8	16.71	8.60
50	-	9.50	6.76	4.64	7.40	13.48	19.29	6.98
70	-	7.90	5.67	4.74	7.94	13.92	20.14	6.24
#images	0	343	763	428	124	25	7	1690

Introduction

Theoretical Background

Former Studies

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

э.

29/49

Evaluation III

MAE Age Range Analysis

- Testing samples are collected from the whole evaluation set
- Testing samples per age are limited to 50

training	0-9	10-19	20-29	30-39	40-49	50-59	60-69
age limit	MAE	MAE	MAE	MAE	MAE	MAE	MAE
30	8.19	7.03	6.56	6.21	7.19	6.47	10.69
50	7.14	6.12	5.33	5.76	6.70	6.71	10.81
70	6.78	5.67	4.65	5.78	6.63	6.86	11.05

Introduction

Theoretical Background

Former Studies

Current Studies 0000000 December 9, 2010

ヘロト ヘ団ト ヘヨト ヘヨト

E ∽ へ (~ Conclusion

30/49

Evaluation IV

Cumulative Scores

age difference (years)

Introduction

Theoretical Background

Former Studies

Current Studies Conclusion 0000000 December 9, 2010

э

Matthias Steiner - Facial Image-based Age Estimation

э

Conclusion

• On the FG-NET database a human reaches the following MAE:

- Whole picture: 6.23 years
- Face only: 8.13 years
- Our best results: 4.77 years
- \Rightarrow AAM or DCT combined with SVM is suited for age estimation
 - The youth/adult classification is very challenging
 - \Rightarrow Using DCT features slightly reduces the classification error
 - An age balanced training set provides a quite balanced age estimation
 - Ethnicity should probably be considered

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

E ∽ へ へ
Conclusion

Questions?

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

э.

December 9, 2010

References

- T.F.Cootes, G.J. Edwards and C.J.Taylor, Active Appearance Models, *in Proc. European Conference on Computer Vision, Vol. 2*, pp. 484-498, 1998.
- V. Vapnik, A. Lerner Pattern recognition using generalized portrait method, *Automation and Remote Control, vol. 24*, pp. 774-780, 1963.
- B. Stegmann, The AAM-API, http://www2.imm.dtu.dk/~aam/.
- Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.
- Xin Geng, Thi-Hua Thou, Yu Thang, Gang Li, Honghui Dai, Learning from Facial Aging Patterns for Automatic Age Estimation, *In Proc. of 14th ACM Int'l Conf. Multimedia*, pp. 307-316, 2006.

Introduction

Theoretical Background

Former Studies

Current Studies Conclusion

э.

Principal Component Analysis (PCA)

- 1. Direction of the greatest variance is detected
- 2. The basis is changed
- 3. The dimension is reduced

Example:

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies 0000000 December 9, 2010 Conclusion

Implementation Additionals I

Training:

- 1 All samples to train the youth/adult classifier
- 2a Samples with age ≤ 20 to train the youth classifier
- 2b Samples with age> 20 to train the adult classifier

SVM type:

- 1. Support Vector Classification for the first step classifier
 - \rightarrow CSVC with the RBF kernel from the *LIBSVM* library
- 2. Support Vector Regression for the second steps classifiers
 - \rightarrow Epsilon-SVR with the RBF kernel also from LIBSVM

Introduction

Theoretical Background

Former Studies

Current Studies

Conclusion

Ъ.

Matthias Steiner – Facial Image-based Age Estimation

December 9, 2010

Building procedure

- 1. Build the AAM on the training set
- 2. Extract the feature vectors for all training images
- 3. Scale the parameters of the feature vectors to {-1,1}
- Train the three classifiers using the respective data and optimize the SVM parameters using a 5 fold cross validation

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

December 9, 2010

イロト イポト イヨト イヨト

Current Studies

Conclusion 37/49

= nac

Implementation Additionals III

Estimation procedure

- 1. Extract the feature vectors for all testing images
- 2. Scale the feature vectors
- 3. Estimate the age by applying the two steps of classifiers

AAM Fitting

Algorithm

- 1. Start the fitting with the mean or landmark shape
- 2. Calculate the initial error between synthesized and real face *Mahalanobis distance*
- 3. Compute the next displacement using a regression matrix
- 4. Estimate the new combined vector with step size 1
- 5. Calculate the new error
 - a Accept the estimation if the error has improved
 - b Otherwise go to step 4 and try a smaller step
- 6. Go to step 3 until the error is not further reduced or the maximum of iterations is reached

Introduction

Theoretical Background

Former Studies

Current Studies 00000000 December 9, 2010

E ∽ ແ ભ Conclusion 39/49

MAE age range analysis

All estimations are grouped according to their real age

features used	0-9	10-19	20-29	30-39	40-49	50-59	60-69
	MAE	MAE	MAE	MAE	MAE	MAE	MAE
shape only	2.77	6.19	7.61	8.18	14.13	23.27	33.50
texture only	2.73	5.65	7.22	8.17	14.15	23.28	34.79
shape & tex	2.52	5.54	7.08	8.03	13.83	23.15	34.00
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.30
image count	371	339	144	79	46	15	8

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

э.

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

Baseline Version Evaluation IV

Errors of the youth/adult classifier

Introduction

Theoretical Background

Matthias Steiner - Facial Image-based Age Estimation

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

э

December 9, 2010

Baseline Version Evaluation V

Large estimation errors of the youth classifier

1 9 9 9 P

Introduction

Theoretical Background

Former Studies

Current Studies

Conclusion

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

Baseline Version Evaluation VI

Large estimation errors of the adult classifier

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

December 9, 2010

43/49

DCT Features Evaluation II

Cumulative Score

age difference (years)

Introduction

Theoretical Background

Former Studies

Current Studies 0000000 December 9, 2010

э

< A

Conclusion

44/49

Background

Introduction

Matthias Steiner – Facial Im

Without any youth/adult error the overall MAE would be:

- Combined feature vector: 3.74 years
- DCT & shape feature vector concatenated: 3.7 years
- \Rightarrow Idea: Get rid of the youth/adult classification
- \Rightarrow Only one global classifier (SVR) for the whole age range 0-69

			E
Theoretical Background	Former Studies	Current Studies	Conclusion
age-based Age Estimation		December 9, 2010	45/49

Global Classifier Approach Evaluation

Overall MAE

- Combined: 5.50 years (before 5.58)
- DCT & Shape: 5.08 years (before 5.08)

Age range analyses

features used	0-9	10-19	20-29	30-39	40-49	50-59	60-69
	MAE	MAE	MAE	MAE	MAE	MAE	MAE
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.30
combined(G)	3.12	3.58	4.96	10.85	18.32	27.75	38.46
DCT&shape	1.99	4.04	7.12	9.37	13.62	21.79	28.66
DCT&shape(G)	3.09	3.69	3.80	8.89	16.76	24.89	35.38
image count	371	339	144	79	46	15	8

Introduction

Theoretical Background

Former Studies

Current Studies

(a)

Conclusion

э.

Matthias Steiner – Facial Image-based Age Estimation

December 9, 2010

Soft Binary Evaluation

Overall MAE

- Combined: 5.21 years (before 5.58), (youth/adult error 5.69%)
- DCT & Shape: 4.77 years (before 5.08), (youth/adult error 4.59%)

Age range analyses

features used	0-9	10-19	20-29	30-39	40-49	50-59	60-69
	MAE	MAE	MAE	MAE	MAE	MAE	MAE
combined	2.28	5.01	7.29	8.31	14.11	23.54	33.3
combined(sb)	2.41	3.88	5.78	9.92	15.83	25.64	35.46
DCT&shape	1.99	4.04	7.12	9.37	13.62	21.79	28.66
DCT&shape(sb)	2.19	3.67	4.97	9.10	15.09	22.60	32.13
image count	371	339	144	79	46	15	8

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

Conclusion

3

Matthias Steiner - Facial Image-based Age Estimation

December 9, 2010

Automatic Initialized Fitting Approach

Problem and Solution

- In real life there are no landmarks to initialize the AAM fitting
- Worst Solution: Try any possible size and position
- Better Solution: Use the MCT detector for face and eye detection

Example

Introduction

Theoretical Background

Former Studies

Current Studies

Conclusion

December 9, 2010

イロト イポト イヨト イヨト

48/49

Automatic Initialized Fitting Evaluation

Mean Absolute Error

The face and eyes detection failed for 185 images

 \Rightarrow They are excluded from testing

		first step	second step		
features used	overall	youth/adult	youth	adult	
	result	classifier	classifier	classifier	
combined landmark	4.87	5.27	2.07	7.23	
combined automatic	6.47	9.49	2.91	7.40	
DCT v1 landmark	5.08	5.21	2.56	7.35	
DCT v1 automatic	7.04	10.04	3.96	7.77	
DCT v2 & shape landmark	4.43	5.08	2.14	7.34	
DCT v2 & shape automatic	5.67	9.14	2.73	7.61	

Introduction

Theoretical Background

Former Studies

Current Studies

イロト イポト イヨト イヨト

December 9, 2010

Conclusion

э.

Matthias Steiner – Facial Image-based Age Estimation