Non-Rigid Structure from Motion for Building 3D Face Model Diploma Thesis

Chengchao Qu

Advisors:

Dipl.-Inform. Hua Gao Dr.-Ing. Hazım Kemal Ekenel

Facial Image Processing and Analysis Group (FIPA) Institute for Anthropomatics (IFA) Department of Informatics Karlsruhe Institute of Technology

13.01.2011

Outline

Introduction

Methodology

Probabilistic PCA Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Outline

Introduction

Aethodology Probabilistic PCA Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Motivation

<u>Input</u>

2D image features tracked over a time span

OUTPUT

 3D configurations as point location of the deforming shape at each time span

Chengchao Qu

Non-Rigid Structure from Motion

Challenges

- Reconstruction from a single camera
- No pre-training subspace models
- Object freely moving and articulating
- Ambiguities & degeneracies in matrix factorization
- Noisy data
- Closed form vs. Statistical estimation

Outline

Introduction

Methodology Probabilistic PCA Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Outline

Introduction

Methodology Probabilistic PCA

Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Probabilistic PCA

Shape model

$$= l_1 + l_2 + l_3 + ...$$

$$\mathbf{s}_i = \overline{\mathbf{s}} + \mathbf{V} \mathbf{z}_i$$

Gaussian prior latent variable

$$\mathbf{z}_i \sim \mathcal{N}(0; \mathbf{I})$$

> 2D projection with zero-mean Gaussian noise

$$egin{aligned} \mathbf{p}_i &= \mathbf{R}_i \mathbf{s}_i + \mathbf{T}_i + \mathbf{n}_i \ \mathbf{p}_i &\sim \mathcal{N}(\mathbf{R}_i \overline{\mathbf{s}} + \mathbf{T}_i; \mathbf{R}_i \mathbf{V} \mathbf{V}^{ op} \mathbf{R}_i^{ op} + \sigma^2 \mathbf{I}) \end{aligned}$$

Probabilistic PCA

Estimate the PPCA model with EM algorithm

$$\begin{aligned} q(\mathbf{z}_i) &= p(\mathbf{z}_i | \mathbf{p}_i, \mathbf{R}_i, \mathbf{T}_i, \bar{\mathbf{s}}, \mathbf{V}, \sigma^2) \\ &= \mathcal{N}(\mathbf{z}_i | \mu; \mathbf{\Sigma}) \end{aligned}$$

• E-step: compute distribution over the latent variable \mathbf{z}_i

$$\mu \equiv \mathbb{E}[\mathbf{z}]$$
$$\phi \equiv \mathbb{E}[\mathbf{z}\mathbf{z}^{\top}] = \mathbf{\Sigma} + \mu\mu^{\top}$$

 M-step: update the other motion parameters by minimizing negative log likelihood

$$Q \equiv (\mathbf{R}, \mathbf{T}, \bar{\mathbf{s}}, \mathbf{V}, \sigma^2) = \operatorname*{arg\,min}_Q \mathbb{E}[-\log p(\mathbf{p} | \mathbf{R}, \mathbf{T}, \bar{\mathbf{s}}, \mathbf{V}, \sigma^2)]$$

Probabilistic PCA

Вит...

- useful information between frames are discarded by the i.i.d. assumption
- the performance with noise is still not satisfying

Outline

Introduction

Methodology Probabilistic PCA Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Probabilistic Relational PCA

• Relational matrix Δ in covariance

$$\mathbf{z} \sim \mathcal{N}(0; \boldsymbol{\Phi}), \boldsymbol{\Phi} = \Delta^{-1}$$

$$\begin{split} \boldsymbol{\mu} &\equiv \mathbb{E}[\mathbf{z}] \\ \boldsymbol{\phi}' &\equiv \mathbb{E}[\mathbf{z} \Delta \mathbf{z}^\top] = \boldsymbol{\Sigma} + \boldsymbol{\mu} \Delta \boldsymbol{\mu}^\top \end{split}$$

- ▶ Relational matrix ∆
 - Apply Procrustes alignment & PCA to the input 2D data
 - The first two eigenvectors represent pan & tilt
 - Framewise distance of the remaining as shape relation A

$$\Delta = \gamma \mathbf{I} + (\mathbf{I} + \mathbf{A})(\mathbf{I} + \mathbf{A})^{\mathsf{T}}$$

Outline

Introduction

Methodology

Probabilistic PCA Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Camera Rotation Update

Camera rotation is subject to orthonormality constraint¹, therefore no closed form update.

- Original PPCA performs a single step of Gauss-Newton update on Euclidean space, which is not optimized & has only a low convergence rate.
- Smooth manifold optimization is a natural generalization of smooth optimization on Euclidean space, unconstrained optimization on Manifolds & quadratic convergence rate possible.

¹A rotation matrix in *n*-dimensions is a $n \times n$ special orthogonal matrix, that is an orthogonal matrix whose determinant is 1: $\mathbf{R}^{\top} = \mathbf{R}^{-1}$, det $\mathbf{R} = 1$.

Camera Rotation Update

Camera rotation is subject to orthonormality constraint¹, therefore no closed form update.

- Original PPCA performs a single step of Gauss-Newton update on Euclidean space, which is not optimized & has only a low convergence rate.
- Smooth manifold optimization is a natural generalization of smooth optimization on Euclidean space, unconstrained optimization on Manifolds & quadratic convergence rate possible.

¹A rotation matrix in *n*-dimensions is a $n \times n$ special orthogonal matrix, that is an orthogonal matrix whose determinant is 1: $\mathbf{R}^{\top} = \mathbf{R}^{-1}$, det $\mathbf{R} = 1$.

Outline Introduction Methodology Experiments Conclusion PPCA PRPCA Manifold Optimization

Optimization on Manifolds

Optimization on Manifolds

Outline Introduction Methodology Experiments Conclusion PPCA PRPCA Manifold Optimization

Optimization on Manifolds

Smooth manifold optimization is a natural generalization of smooth optimization on Euclidean space.

Chengchao Qu

Non-Rigid Structure from Motion

Outline Introduction Methodology Experiments Conclusion PPCA PRPCA Manifold Optimization

Generalization of the Newton Method

$$x_{k+1} = x_k - [f''(x_k)]^{-1} f'(x_k)$$

- Locally quadratic rate of convergence to a local minimum in general
- Convergence in a single iteration for quadratic functions
- Knowledge up to only second order of the function at the current point required

GENERALIZATION

- Update direction
- Metric & update path
- Gradient & Hessian

Outline Introduction Methodology Experiments Conclusion

PPCA PRPCA Manifold Optimization

Generalization of the Newton Method

$$x_{k+1} = x_k - [f''(x_k)]^{-1} f'(x_k)$$

- Locally quadratic rate of convergence to a local minimum in general
- Convergence in a single iteration for quadratic functions
- Knowledge up to only second order of the function at the current point required

GENERALIZATION

- Update direction
- Metric & update path
- Gradient & Hessian

Tangent Space

If an inner product $g_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}$ is defined on the tangent space $T_x \mathcal{M}$ then \mathcal{M} is a Riemannian manifold.

Tangent Space

 $\gamma'_x(0): f \in C^\infty(x) \mapsto \frac{\mathrm{d}}{\mathrm{d}\,t} f(\gamma(t))|_{t=0} \in \mathbb{R}$

If an inner product $g_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}$ is defined on the tangent space $T_x \mathcal{M}$ then \mathcal{M} is a Riemannian manifold.

Tangent Space

$$\begin{split} \gamma'_x(0) &: f \in C^\infty(x) \mapsto \frac{\mathrm{d}}{\mathrm{d}\,t} f(\gamma(t))|_{t=0} \in \mathbb{R} \\ T_x \mathcal{M} &= \{\gamma'(0) : \gamma \text{ curve in } \mathcal{M}, \gamma(0) = x\} \end{split}$$

If an inner product $g_x : T_x \mathcal{M} \times T_x \mathcal{M} \to \mathbb{R}$ is defined on the tangent space $T_x \mathcal{M}$ then \mathcal{M} is a Riemannian manifold.

Riemannian manifold

- ► In case of Riemannian manifold f'(p) & f''(p) in the Newton iteration can be replaced with the gradient & the Hessian.
- Computation of geodesics is possible given the metric structure.
- ► Hence a Newton iteration $x_{k+1} = x_k dx$ is done by a unit step along the geodesic in the direction -dx.

Riemannian manifold

- ► In case of Riemannian manifold f'(p) & f''(p) in the Newton iteration can be replaced with the gradient & the Hessian.
- Computation of geodesics is possible given the metric structure.
- ► Hence a Newton iteration $x_{k+1} = x_k dx$ is done by a unit step along the geodesic in the direction -dx.

Riemannian Newton direction $\Delta_k \in T_x \mathcal{M}$:

$$\operatorname{Hess} f(x_k)\Delta_k = -\operatorname{grad} f(x_k)$$

Properties

► The constraint manifold SO(3) is a instance of Stiefel manifold² with the canonical Riemannian metric

$$g(\Delta_1, \Delta_2) = \frac{1}{2} \operatorname{tr}(\Delta_1^\top \Delta_2)$$

▶ We have explicit formula for the geodesic of SO(3) in the direction $\Delta \in T(SO(3))^3$

 $\mathbf{R}(t) = \exp(\mathbf{R}, \Delta t) = \mathbf{R} \exp(\hat{\omega}t) = \mathbf{R} \left(\mathbf{I} + \hat{\omega} \sin(t) + \hat{\omega}^2 (1 - \cos(t)) \right)$

Gradient & Hessian

 $dF(\Delta) = \left. \frac{dF(\mathbf{R}(t))}{dt} \right|_{t=0}, \text{Hess } F(\Delta, \Delta) = \left. \frac{d^2 F(\mathbf{R}(t))}{dt^2} \right|_{t=0}$ $\text{Hess } F(\mathbf{X}, \mathbf{Y}) = \frac{1}{4} \left(\text{Hess } F(\mathbf{X} + \mathbf{Y}, \mathbf{X} + \mathbf{Y}) - \text{Hess } F(\mathbf{X} - \mathbf{Y}, \mathbf{X} - \mathbf{Y}) \right)$

²The Stiefel manifold $V_k(\mathbb{R}^n)$ is the set of all orthonormal *k*-frames in \mathbb{R}^n $V_k(\mathbb{R}^n) = \{ \mathbf{A} \in \mathbb{R}^{n \times k} : \mathbf{A}^\top \mathbf{A} = \mathbf{I} \}.$

Chengchao Qu

Outline Introduction Methodology Experiments Conclusion PPCA PRPCA Manifold Optimization

Properties

► The constraint manifold SO(3) is a instance of Stiefel manifold² with the canonical Riemannian metric

$$g(\Delta_1, \Delta_2) = \frac{1}{2} \operatorname{tr}(\Delta_1^\top \Delta_2)$$

▶ We have explicit formula for the geodesic of SO(3) in the direction $\Delta \in T(SO(3))^3$

$$\mathbf{R}(t) = \exp(\mathbf{R}, \Delta t) = \mathbf{R} \exp(\hat{\omega}t) = \mathbf{R} \left(\mathbf{I} + \hat{\omega} \sin(t) + \hat{\omega}^2 (1 - \cos(t)) \right)$$

Gradient & Hessian

$$dF(\Delta) = \left. \frac{dF(\mathbf{R}(t))}{dt} \right|_{t=0}, \text{Hess } F(\Delta, \Delta) = \left. \frac{d^2 F(\mathbf{R}(t))}{dt^2} \right|_{t=0}$$
$$\text{Hess } F(\mathbf{X}, \mathbf{Y}) = \frac{1}{4} \left(\text{Hess } F(\mathbf{X} + \mathbf{Y}, \mathbf{X} + \mathbf{Y}) - \text{Hess } F(\mathbf{X} - \mathbf{Y}, \mathbf{X} - \mathbf{Y}) \right)$$

²The Stiefel manifold $V_k(\mathbb{R}^n)$ is the set of all orthonormal *k*-frames in \mathbb{R}^n $V_k(\mathbb{R}^n) = \{ \mathbf{A} \in \mathbb{R}^{n \times k} : \mathbf{A}^\top \mathbf{A} = \mathbf{I} \}.$ ${}^{3}t \in \mathbb{R}, \hat{\omega} = \mathbf{R}^\top \Delta \in \mathfrak{so}(3)$ (the Lie algebra associated with SO(3))

Chengchao Qu

Non-Rigid Structure from Motion

Outline Introduction Methodology Experiments Conclusion PPCA PRPCA Manifold Optimization

Properties

 The constraint manifold SO(3) is a instance of Stiefel manifold² with the canonical Riemannian metric

$$g(\Delta_1, \Delta_2) = \frac{1}{2} \operatorname{tr}(\Delta_1^\top \Delta_2)$$

▶ We have explicit formula for the geodesic of SO(3) in the direction $\Delta \in T(SO(3))^3$

$$\mathbf{R}(t) = \exp(\mathbf{R}, \Delta t) = \mathbf{R} \exp(\hat{\omega}t) = \mathbf{R} \left(\mathbf{I} + \hat{\omega} \sin(t) + \hat{\omega}^2 (1 - \cos(t)) \right)$$

Gradient & Hessian

$$dF(\Delta) = \left. \frac{dF(\mathbf{R}(t))}{dt} \right|_{t=0}, \text{Hess } F(\Delta, \Delta) = \left. \frac{d^2 F(\mathbf{R}(t))}{dt^2} \right|_{t=0}$$

Hess
$$F(\mathbf{X}, \mathbf{Y}) = \frac{1}{4} (\text{Hess } F(\mathbf{X} + \mathbf{Y}, \mathbf{X} + \mathbf{Y}) - \text{Hess } F(\mathbf{X} - \mathbf{Y}, \mathbf{X} - \mathbf{Y}))$$

²The Stiefel manifold $V_k(\mathbb{R}^n)$ is the set of all orthonormal *k*-frames in \mathbb{R}^n $V_k(\mathbb{R}^n) = \{ \mathbf{A} \in \mathbb{R}^{n \times k} : \mathbf{A}^\top \mathbf{A} = \mathbf{I} \}.$ ${}^{3}t \in \mathbb{R}, \hat{\omega} = \mathbf{R}^\top \Delta \in \mathfrak{so}(3)$ (the Lie algebra associated with SO(3))

Chengchao Qu

Non-Rigid Structure from Motion

Algorithm

Algorithm 1 Minimize $F(\mathbf{R}_i) = \mathbb{E}[||\mathbf{p}_i - (\mathbf{R}_i(\mathbf{\bar{s}} + \mathbf{V}\mathbf{z}_i) + \mathbf{T}_i)||_F^2]$

At the point $\mathbf{R}_i \in SO(3)$, compute the optimal updating vector $\Delta_i = -\operatorname{Hess}^{-1} G$

- 1: Choose basis tangent vectors $\mathbf{E}^k = \mathbf{R}_i \hat{\mathbf{e}}_k \in T(SO(3))$ with \mathbf{e}_k for $1 \le k \le 3$ the standard basis for \mathbb{R}^3 .
- 2: Compute the 3×3 matrix $\mathbf{H}_{kl} = \operatorname{Hess} F(\mathbf{E}^k, \mathbf{E}^l), 1 \le k, l \le 3$.
- 3: Compute the 3 dimensional vector $\mathbf{g}_k = \mathrm{d} F(\mathbf{E}^k), 1 \leq k \leq 3$.
- 4: Compute the vector $\omega = (\omega_1, \omega_2, \omega_3)^\top \in \mathbb{R}^3$ such that $\omega = -\mathbf{H}^{-1}\mathbf{g}$.
- 5: Then the optimal updating vector $\Delta_i = \operatorname{Hess}^{-1} G = \mathbf{R}_i \hat{\omega}$.

Update the rotation \mathbf{R}_i

1: Move \mathbf{R}_i in the direction Δ_i along the geodesic to $\exp(\mathbf{R}_i, \Delta_i t)$, where $t = \sqrt{\frac{1}{2} \operatorname{tr}(\Delta_i^{\top} \Delta_i)}$.

Outline

Introduction

Methodology

Probabilistic PCA Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Datasets

Vicon face data [1]

- ▶ 316 frames, 40 points
- Same person
- Captured using markers
- Few noises
- Few pose changes

Datasets

Vicon face data [1]

- 316 frames, 40 points
- Same person
- Captured using markers
- Few noises
- Few pose changes

BU-3DFE [4]

- 300 frames, 83 points
- Different persons
- Labeled by hand
- A lot of noises
- Zero-mean Gaussian random pan & tilt added

- ▶ 50 EM iterations
- 0% noise

Vicon face data

Vicon face data

BU-3DFE

▶ 50 EM iterations

Averaged over 10 runs

Up to 30% additive Gaussian noise

 $\frac{||\text{noise}||_F}{||\text{measurement}||_F}$

Vicon face data

- ► 50 EM iterations

 $\frac{||\text{noise}||_F}{||\text{measurement}||_F}$

Averaged over 10 runs

Runtime

Averaged over 50 EM iterations

Runtime

Vicon face data

Runtime

Outline

Introduction

Methodology

Probabilistic PCA Probabilistic Relational PCA PPCA Optimization on Manifolds

Experiments

Conclusion

Conclusion

- Statistical NRSFM framework
- PRPCA for shape recovery, slight improvement on BU-3DFE
- Riemannian Newton method for motion recovery, significant improvement on both datasets
 - Orthonormality constraint natively solved by its geometric properties rather than numerical optimizations
 - Better performance under noise
 - Higher computational efficiency

Future Work

- More extensive experiments
- Appearance model, texture...

Conclusion

- Statistical NRSFM framework
- PRPCA for shape recovery, slight improvement on BU-3DFE
- Riemannian Newton method for motion recovery, significant improvement on both datasets
 - Orthonormality constraint natively solved by its geometric properties rather than numerical optimizations
 - Better performance under noise
 - Higher computational efficiency

FUTURE WORK

- More extensive experiments
- Appearance model, texture...

That's All...

Thank you for your attention! Questions? Suggestions?

Literature

- L. Torresani, A. Hertzmann and C. Bregler, "*Nonrigid* structure-from-motion: Estimating shape and motion with hierarchical priors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 5, 2008.
- W.-J. Li, D-Y. Yeung and Z. Zhang, "*Probabilistic relational PCA*," Advances in Neural Information Processing Systems 23, MIT Press, 2009.
- Y. Ma, J. Košecká and S. Sastry, "Optimization criteria and geometric algorithms for motion and structure estimation," Int'I J. Computer Vision, vol. 44, no. 3, pp. 219-249, 2001.
- L. Yin, X. Wei, Y. Sun, J. Wang, and M. Rosato, "*A 3D facial expression database for facial behavior research*," The 7th International Conference on Automatic Face and Gesture Recognition, pp. 211-216, 2006.

