

Face Verification Across Age Progression Using Gradient Orientation Pyramids and SVM

Florin Lipan, Master Student

KIT, Computer Science Department

Problem statement & Motivation

- Face verification is a two-class classification problem, as opposed to the face recognition process
 - Given an input image pair I1 and I2, assign it as either intrapersonal (the same person) or extrapersonal (different individuals)
- Problem: identify / verify a person based on an image from their past
- Area of application:
 - Surveillence
 - Passport verification (or other documents)
 - Human-computer interaction
 - Identifying missing persons over time
- Face verification across age progression has been subject to little attention

The challenges

- Main problems of face verification over age progression:
 - Biometric changes over years:
 - Facial texture: e.g. wrinkles
 - Shape: weight gain
 - Facial hair: mustache or beard
 - Presence of glasses
 - Scars

- Changing in the image acquisiton technique and environment:
 - Illumination
 - Image quality: caused by using different cameras
 - Saturation: when converting nondigital photos
 - Changes in pose: not an issue with biometric image sets

Previous approaches

- Generative methods:
 - Concept: Transform one image to have the same age as the other or transform both to reduce aging effects
 - Age estimation & age simulation
 - Most generative methods require additional information such as age or landmark points
- Discriminative methods:
 - Concept: As opposed to generative methods, these methods do not allow one to generate samples from the joint distribution
 - Avoid explicit age modeling
 - Concentrate on deriving age-invariant signatures from faces
 - Age information is not required
 - For tasks such as classification discriminative models usually yield better results

Previous approaches – Examples (1)

- Lanitis et al., "Toward automatic simulation of aging effects on face image":
 - Generative method
 - Uses a statistical model to capture the variation of facial shapes over age progression
 - The model is then applied on image sets for age estimation & face verification
 - Simulation of age effects examples: (1) original image; (2) age-transformed image; (3) the same person, at the target age

Previous approaches – Examples (2)

- Ramanathan and Chellappa, "Face verification across age progression"
 - Discriminative method
 - Uses a half face (PointFive face) to tackle illumination variations
 - PointFive Face: better illuminated half of a frontal face (assuming symmetry)
 - Combines eigenspace techniques and a Bayesian model to capture the intrapersonal and extrapersonal features

The new approach

- Ling, Soatto, Ramanathan and Jacobs, "Face Verification Across Age Progression Using Discriminative Methods":
 - Discriminative method
 - Features are extracted using gradient orientation pyramids (GOPs) and classification is made using support vector machine (SVM)

Preprocessing & Feature extraction

- Preprocessing:
 - alignment by eye labels
 - cropping with an elliptic region
 - reduce image size
- The feature vector $x = F(I_1, I_2)$ is extracted from the image pair (I_1, I_2) through a **feature extraction function** $F : I \times I \rightarrow \mathbb{R}^d$
- F relies on GOP (gradient orientation pyramids)
 - **GOP** is a gradient-based approach, similar to SIFT (scale invariant feature transfer) and HOC (histogram of oriented gradients)
- Motivation:
 - gradient orientation (GO) of each channel of human faces is robust under age progression
 - GO is robust to illumination changes
 - GOP discards gradient magnitudes and uses only orientations = significant improvement of result

Gradient Orientation Pyramids (1)

• Given an image I(p), where p=(x,y) denotes pixel location, we define the **pyramid of** I as:

$$P(I) = \{I(p;\sigma)\}_{\sigma=0}^{s}$$

with

$$I(p;0) = I(p)$$

 $I(p;\sigma) = [I(p;\sigma-1) \otimes \Phi(p)] \downarrow,$

- $\sigma = (1, ..., s)$ and s = the number of pyramid layers
- $\phi(p)$ the Gaussian kernel (standard deviation of 0.5)
- ⊗ the convolution operator
- $ightharpoonup \downarrow_2$ half size downsampling

Gradient Orientation Pyramids (2)

■ The **GO** at each scale σ is defined by its **normalized** gradient vectors at each pixel:

$$g(I(\mathbf{p}; \sigma)) = \begin{cases} \frac{\nabla(I(\mathbf{p}, \sigma))}{|\nabla(I(\mathbf{p}, \sigma))|}, & \text{if } |\nabla(I(\mathbf{p}, \sigma))| > \tau \\ (0, 0)^{\top}, & \text{otherwise} \end{cases}$$

- τ threshold for dealing with "flat" pixels
- Consequently, the GOP of I is defined as:

$$G(I) = stack (\{ g(I(p;\sigma)) \}_{\sigma=0}^{s}) \in \Re^{d \times 2}$$

- the stack function used for stacking GOs of all pixels across all scales
- \bullet d the total number of pixels

Comparing GOPs

Difference feature vector $x = F(I_1, I_2)$ of an image pair (I_1, I_2) equals to the cosines of the difference between GOPs at all pixels:

$$x = F(I_1, I_2) = (G_1 \bullet G_2) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

where "●" – the element-wise product

Support Vector Machine Classifier

The SVM divides the feature space into two classes: intrapersonal and extrapersonal; the boundries are set using the following equation:

$$\sum_{i=1}^{N_s} \alpha_i y_i K(s_i, x) + b = \Delta$$

N_s – the number of support vectors

s_i – the *i*-th support vector

 Δ – trade off the correct reject rate (CRR) and correct acceptance rate (CAR)

K – kernel function

The gaussian kernel is applied to the extracted feature x to be used with the SVM framework:

$$K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma |\mathbf{x}_1 - \mathbf{x}_2|^2)$$

Experiments & Results (1) – Datasets

- Two passport databases: Passport I and Passport II:
 - Passport I: 452 intrapersonal & 2251 randomly generated extrapersonal image pairs
 - Passport II: 1824 intrapersonal & 9492 randomly generated extrapersonal image pairs

Dataset	# intra pair	mean age	std. age	mean age diff.	std. age diff.
Pass. I	452	39	10	4.27	2.9
Pass. II	1824	48	14.7	7.45	3.2

Experiments & Results (2) – Datasets

- The FGnet database:
 - Contains 1002 images from 82 subjects over large age ranges
 - The experiment uses pictures taken above the age of 18 and roughly frontal faces

# subject	# intra pair	intra pair mean age		mean age diff.	std. age diff.	
62	665	29.5	11.3	12.3	9.7	

Experiments & Results (3) – Evaluation

- Metrics:
 - The correct reject rate (CRR):

$$\text{CRR} = \frac{\#\text{correctly rejected extra-personal pairs}}{\#\text{total extra-personal pairs}}$$

The correct acceptance rate (CAR):

$$CAR = \frac{\text{\#correctly accepted intra-personal pairs}}{\text{\#total intra-personal pairs}}$$

- The equal error rate (EER): the error rate when a solution takes the same CAR and CRR
- Evaluation:
 - based on CRR-CAR curves
 - three-fold cross validation
 - only low-res gray images are used for the presented approaches

Karlsruhe Institute of Technology

Experiments & Results (4) – Passport I + II

- (1) SVM+GOP: proposed in this paper
- (2) SVM+GO: uses only the GO at the original scale
- (3) SVM+G: uses the gradient itself, rather than the GO
- (4) SVM+diff: proposed by Phillips
- (5) GO: proposed by Chen, Belhumeur and Jacobs
- (6) I_2 : uses the I_2 norm to compare two normalized images
- (7) Bayesian + PointFive Face
- Two commercial systems: Vendor A and Vendor B

Experiments & Results (5) – Passport I + II

Equal Error Rate:

		GO [6]	SVM+diff [27]	SVM+G	SVM+GO	SVM+GOP	Vendor A	Vendor B
	Pass. I	17.6%	16.5%	17.8%	9.5%	8.9%	9.5%	11.5%
Ī	Pass. II	20.7%	18.8%	17.4%	12.0%	11.2%	13.5%	8.0%

SVM+GOP	Bayesian [30]
5.1%	8.5%
10.8%	12.5%

Comparison between SVM+GOP and Bayesian+PointFive Faces:

Experiments & Results (6) - FGnet database

 Challenges: large age gaps (up to 45 years) & limited number of subjects (making learning difficult)

- (a), (b), (c) correctly accepted intrapersonal pairs (d), (e), (f) inccorectly rejected intrapersonal pairs **Age difference**:
- (a) 18 years; (b) 31 years; (c) 7 years
- (d) 35 years; (e) 23 years; (f) 32 years

Observations (1)

- Face verification complexity becomes saturated after the age gap is larger than four years (but not longer than 10 years)
 - Experiment on Passport II, trained with 80 random intra and 80 random extra pairs:

- Verification on children faces is much harder than on adults
 - The alignment problem

Observations (2) – Wrinkle related features

- Important factors for age perception
- Hardly perceptible with low-res images
- Appear mostly on forehead and cheeks: irrelevant areas for face recognition
- Conclusion: wrinkles can be ignored (e.g. through manually adjusted masks or automatic feature selection)

+FS: with feature selection mask

Conclusion

- SVM+GOP outperforms commercial systems on most tests, which are usually very well tuned
- Advantages:
 - discriminative method: requires no prior age information and doesn't rely on age estimation & simulation algorithms
 - GOP is insensitive to illumination changes
 - GOP is robust across age progression
 - good performance, compared to other existing algorithms

Questions?

Sources

Bibliography:

- Ling, Soatto, Ramanathan and Jacobs "Face Verification Across Age Progression Using Discriminative Methods"
- Ling, Soatto, Ramanathan, Jacobs "A Study of Face Recognition as People Age"
- Lanitis et al. "Toward automatic simulation of aging effects on face image"
- Ramanathan, Chellappa "Face verification across age progression"
- Abate, Nappi, Riccio, Sabatino "2D and 3D face recognition: A survey"

Images:

- http://www.beautyanalysis.com/images/PG_41E_-_Man_- showing_progressive_aging.jpg
- http://www.artofobama.com/wp-content/uploads/2009/01/obama-age.jpg
- http://morph.cs.st-andrews.ac.uk/Transformer/
- http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png