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Abstract—This paper presents a novel framework for detecting, localizing, and classifying faces in terms of visual traits, e.g., sex or

age, from arbitrary viewpoints and in the presence of occlusion. All three tasks are embedded in a general viewpoint-invariant model of

object class appearance derived from local scale-invariant features, where features are probabilistically quantified in terms of their

occurrence, appearance, geometry, and association with visual traits of interest. An appearance model is first learned for the object

class, after which a Bayesian classifier is trained to identify the model features indicative of visual traits. The framework can be applied

in realistic scenarios in the presence of viewpoint changes and partial occlusion, unlike other techniques assuming data that are single

viewpoint, upright, prealigned, and cropped from background distraction. Experimentation establishes the first result for sex

classification from arbitrary viewpoints, an equal error rate of 16.3 percent, based on the color FERET database. The method is also

shown to work robustly on faces in cluttered imagery from the CMU profile database. A comparison with the geometry-free bag-of-

words model shows that geometrical information provided by our framework improves classification. A comparison with support vector

machines demonstrates that Bayesian classification results in superior performance.

Index Terms—Scale-invariant feature, viewpoint invariance, probabilistic modeling, visual trait, sex classification, faces, occlusion.
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1 INTRODUCTION

PRACTICAL image processing applications must be able to
robustly detect faces in arbitrary, cluttered images, and

make inferences regarding their visual traits. For example,
consider an intelligent vision system that must identify males
in a crowded scene, as illustrated in Fig. 1. Image features
associated with human face instances must first be detected
and localized in the midst of unrelated clutter, occlusion, and
viewpoint change, after which they can be used to classify
traits such as sex for each person detected. Although the tasks
of feature detection, localization, and classification are all
inextricably linked in such a realistic image processing
scenario, they are often treated in isolation in the current
vision literature. For example, approaches to classifying facial
traits such as sex typically assume frontal face data which
have been prealigned and/or cropped from distracting
clutter prior to classification [1], [2], [3], [4], [5], [6]. As a
result, it is unlikely that they can be applied in arbitrary
scenes, where the image features required for classification
may be difficult to localize or may not even exist due to
viewpoint change or occlusion (e.g., scarves, hairstyles).
Likewise, recent work has shown that general 3D object

classes can be detected and localized from arbitrary view-
points and clutter using probabilistic models of local scale-
invariant features [7], [8], [9], [10], [11]. However, it is
unclear whether such models can be used to classify facial
traits, or how effective such classification would be.

In this paper, we present an integrated framework for
detecting, localizing, and classifying faces in terms of traits
such as sex, from arbitrary viewpoints and under occlusion.
Our approach, which in its preliminary form was presented
in [14], is the first to propose learning facial traits from
arbitrary viewpoints, and the first to embed all three
computer vision tasks in a common framework. The
framework is based on a general viewpoint-invariant
appearance model derived from local scale-invariant
features (e.g., SIFT), where features are probabilistically
quantified in terms of their occurrence, appearance, and
geometry within a common reference frame. Our approach
involves first learning a viewpoint-invariant model of face
appearance, after which learned facial features are used to
train a Bayesian classifier of facial traits. Classifier training
involves estimating the likelihood ratio of feature occur-
rence given trait presence versus absence, the underlying
premise being that informative features are more likely than
not to co-occur with the trait of interest. As our framework
is invariant to viewpoint changes, it can be trained and
tested on sets of image data acquired from arbitrary
viewpoints, and does not require explicit modeling of
multiple views or 3D structure.

This paper provides an in-depth exploration of facial
trait classification, largely due to the availability of labeled
public data from which difficult traits such as sex can be
studied. The framework we present is potentially applicable
to object classes other than faces, however, and we attempt
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to maintain a general discussion throughout. The remainder
of this paper is organized as follows: In Section 2, we review
related work in general object class detection and visual
trait classification, in particular, the trait of sex in face
images. In Section 3, we describe our framework for trait
learning and classification based on probabilistic modeling
of scale-invariant image features. In Section 4, we describe
experimentation relating to face detection, localization, and
sex classification. Using the standard color FERET database
[13], we provide a quantitative performance evaluation of
combined detection, localization, and sex classification of
face images acquired from arbitrary viewpoints and in the
presence of simulated occlusion, the first results of their
kind in the literature. We compare viewpoint-invariant
modeling and Bayesian classification with geometry-free
bag-of-words modeling and support vector machine (SVM)
classification, alternative approaches which could also be
used. We show how our approach can be used to identify
visual cues of sex in face images over a range of viewpoints,
and demonstrate our system on a subset of difficult,
cluttered face images from the CMU profile database [12].
Finally, in Section 5, we conclude with a discussion and
pointers to future work.

2 RELATED WORK

Visual traits are qualities of an object class identifiable from
images, such as the make or model of cars, or the age or sex
of faces. They represent a mechanism by which members of
the same object class can be described or subdivided into
meaningful categories. In order to classify visual traits from
arbitrary viewpoints and in the presence of occlusion, there
must be a means of reliably identifying and localizing the
image features on which classification is based. To date, the
majority of classification approaches utilize feature repre-
sentations that cannot be easily localized from arbitrary
viewpoints or in the presence of occlusion. Here, we review
classification of the specific trait of sex from face images,
and present recent work in feature detection that makes it
possible to identify local image features from arbitrary

viewpoints and in the presence of occlusion, thus providing

a basis for our classification system.

2.1 Image Features

In order to classify visual traits of object classes such as

faces, the image features used in classification and their

associated object class instances must first be detected and

localized in images. Although much work in visual trait

classification assumes prelocalized object instances and

image features, detection and localization are generally

nontrivial in arbitrary scenes. This is because object class

detection requires effective dealing with a wide range of

appearance variation due to viewpoint changes, geome-

trical deformations such as translations, rotations, and scale

changes, illumination changes, partial pattern occlusion,

and multimodal intraclass variation (e.g., faces with/with-

out sunglasses). In this paper, we seek a practical trait

classification system based on image features that can be

detected and localized in arbitrary imagery, particularly

images acquired from arbitrary viewpoints and in the

presence of occlusion.
Determining which features can be detected and used to

classify visual traits in arbitrary imagery can be achieved by

learning an appearance model from a set of training images.

Early approaches advocated learning models based on

global features, e.g., eigenfaces [15], but global features are

poorly suited for coping with local appearance variation and

occlusion and have been shown to be suboptimal for

detection [16]. Researchers have increasingly turned to local

image feature representations [17], which can be identified

in the presence of partial pattern occlusion. Local Haar

wavelets, for instance, have proven useful for frontal face

detection using boosted classifiers [18], as they can be

computed very efficiently using integral images, particularly

for frontal, upright images. The integral image approach is

less effective at coping with arbitrary viewpoints, as a

battery of detectors must be used to model in-plane

deformation parameters such as image scale and orientation

and out-of-plane viewpoint changes [19].
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Fig. 1. Illustrating our framework for viewpoint-invariant detection, localization, and trait classification from arbitrary viewpoints. All three tasks are
embedded in a viewpoint-invariant model derived from scale-invariant image features. In (b), scale-invariant features (white circles) are extracted
from an image of a cluttered scene (a). Next, in (c), the viewpoint-invariant model is used to detect and localize face instances (small white arrows)
and associated features. Finally, in (d), a Bayesian classifier is used to determine the sex of face instances from associated features. The image
shown is from the CMU face database [12], and the probabilistic framework used is learned from 500 color FERET [13] face images acquired from
arbitrary viewpoints.
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Local scale-invariant features [20], [21], [22], [23], [24]
offer an attractive alternative to Haar wavelets due to their
high degree of invariance to in-plane transforms. Scale-
invariant features are oriented image regions characterized
geometrically within an image in terms of their location x,
orientation �, and scale �. They can be efficiently extracted
from images using scale-space pyramids in the presence of
geometrical deformations such as translations, rotations,
and scale changes and linear changes in illumination.
Feature geometrical information obtained during the
extraction process can be used to generate independent
hypotheses as to the geometrical transform relating
different images, without requiring an expensive explicit
search over transform parameters. Scale-invariant features
can be extracted from a variety of different underlying
image characteristics, including derivatives in image scale
[20] and space [22], phase [21], entropy [23], color moments
[24], and others.

While invariant features can be used to reliably identify
instances of the same scene or object in new images, i.e., the
task of object detection, they cannot be used directly to
obtain correspondence between different instances of the
same class, for example, faces of different people. This is
primarily due to intraclass appearance variability, e.g.,
changes in facial expression, facial hair, makeup, etc.
Probabilistic modeling can be used to deal with these
difficulties, the subject of the next section.

2.2 Modeling Appearance from Invariant Features

Probabilistic modeling and machine learning can be used in
order to reliably identify invariant features and their
associated object class instances in arbitrary, cluttered
images [25], [26], [27], [28], [29], [30], [31], [32], [7], [33].
Probabilistic models describe the appearance of an object
class in terms of a set of local features, including their
appearances, occurrences, and geometries (e.g., image
location, orientation, and scale). Models generally vary in
terms of the assumptions made regarding interfeature
geometrical dependencies, e.g., geometry independent
models [27], [28], naive Bayes dependencies (i.e., star
models) [25], [34], [7], [26], Markov (neighborhood) depen-
dencies [9], [32], fully dependent models (i.e., constellation
models) [35], and intermediate approaches [29]. Although
geometrical dependence assumptions vary, most models
make the assumption of conditional independence of
individual feature appearances/occurrences given feature
geometries and the object class. In this way, features can be
efficiently identified independently in terms of their
appearances and then used to construct geometrical
hypotheses as to how they relate to form object classes.

Most approaches to invariant feature modeling are based
on stable 2D feature configurations in the image plane, and
are thus single viewpoint in nature. Recent approaches have
extended modeling to general 3D object classes from
arbitrary viewpoints, for a diverse range of object classes
such as faces, motorbikes, shoes, etc. [25], [7], [8], [9], [10],
[11]. To do this, models must have a means of accounting
for the variable of viewpoint, or pose of the camera relative
to the object class. This can be done by either explicitly
modeling the variable of viewpoint or formulating the
model in manner which is invariant to viewpoint change

[36]. Modeling viewpoint explicitly involves describing
appearance as a function of viewpoint, either by maintain-
ing a set of views or aspects around the object class [37],
[25], [8], [9] or by using 3D modeling to generate
appearance from novel views [11], [10]. Detection is then
performed by fitting data to the nearest view, requiring a
search over viewpoint. The viewpoint-invariant approach
relates image features to a geometrical structural descrip-
tion in a manner independent of viewpoint, e.g., using
perspective invariants [7], [38], or parameterized volumetric
primitives such as geons [39] or generalized cylinders [40].
As the variable of viewpoint is effectively marginalized
from the formulation, detection can be achieved indepen-
dently of viewpoint.

Model learning generally involves clustering techniques
in order to identify scale-invariant features in different
images, which are similar in terms of their appearances and
their geometries relative to the object class. Although
unsupervised learning techniques have been used for
single-viewpoint models [35], [41], learning models over
viewpoint variation typically requires a degree of additional
supervision or data preparation in order to establish feature
correspondences across neighboring viewpoints in addition
to across object class instances. The multiview learning
techniques of Thomas et al. [8], Savarse and Fei-Fei [10], and
Yan et al. [11] require images captured from multiple
viewpoints around each individual object class instance. As
such, they are not directly applicable to arbitrary sets of
images where a single object instance may not be seen more
than once. The multiview model of Schneiderman and
Kanade [25] and the flexible model of Kushal et al. [9]
require object class instances to be localized within the
image and sorted according to viewpoint. The object class
invariant (OCI) model of Toews and Arbel [7] requires only
localization of object class instances for learning, no explicit
viewpoint information. For this reason, we adopt the OCI
model in this paper, which we describe later in more detail.

2.3 Visual Trait Classification: Sex from Faces

Visual traits are abstract qualities of an object class
identifiable from images, by which members of an object
class can be described or categorized. While subcategories
can be defined in a taxonomical fashion according to
specific image features [42] or segmentations [43], visual
traits are not generally defined by observable image
features per se but rather by factors external to the image.
The trait of sex, for example, is clearly defined by factors
external to the image; however, the sex of a face can be
inferred from an ensemble of image features. Thus, unlike
subcategories defined solely by image features [42], [43],
classification based on visual traits generally implies a
learning process based on external training information.

A wide range of visual traits are used by humans in
order to describe objects in images [44]. Nevertheless,
learning and classifying visual traits of general object
classes is not yet a current focus in computer vision, as
evidenced in public image databases used for object
analysis. Databases used for learning object class appear-
ance with minimal supervision typically contain many
images but small numbers of unique object class
instances, e.g., 450 images of 26 different people [26] or
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700 images of 10 different cell phones [10]. As a result,
they are of limited use for learning and classifying traits
over many different object class instances, a large
population of people, for instance. Recent projects to
create labeled databases such as PASCAL [45] or LabelMe
[46] focus on labeling object identity and location, but
provide little information regarding further traits. Even
with accurate trait labeling, the number of images may be
insufficient for learning traits in many cases. Consider the
trait of motorcycle design, for instance. The PASCAL 2006
database [45] contains 275 motorcycle training instances
while motorcycles can be classified into at least seven
basic designs [47]. This leaves relatively few samples
from which to learn motorcycle design traits from
arbitrary viewpoints.

Due to the ubiquitous nature of face image analysis, one
of the most common visual trait classification tasks is that of
determining sex from face images. The wide range of
published approaches to sex classification thus highlights
the state-of-the-art in general trait classification. Trait
learning has been tackled using spatially global feature
representations such as templates [48], [6], principal
components [5], independent components [4], or image
intensities directly [2]. While most approaches utilize
intensity data, 3D information may improve sex classifica-
tion [49]. Much work has investigated the use of different
machine learning techniques such as neural networks [6],
SVMs [5], and boosted classifiers [2]. More recently, trait
classification based on local features has emerged, using
local regions [50] or Haar wavelets [3], [51]. In the interest of
comparison, most approaches train and test on the standard
FERET face database [13], which contains accurate labels for
visual traits such as sex, age, and ethnicity.

To date, all published approaches to sex classification
are based exclusively on single viewpoints, i.e., frontal
faces [1], [2], [3], [4], [5], [6]. With the exception of [51],
most approaches assume that, prior to classification, faces
and facial features are precisely localized and background
distraction such as hair and clothing is cropped away. For
example, localization is performed by manually specifying
eye locations [2] or using special-purpose frontal face
alignment software [3], [5], and predefined facial masks are
subsequently applied to remove background clutter. As a
result, the reported classification error rates of 4-10 percent
represent artificially low, ideal-case results. They offer little
insight regarding classification performance in a general
vision system where localization of faces and facial features
required for classification is nontrivial. Indeed, a recent
work evaluating the effect of artificial localization pertur-
bations on classification accuracy showed that accuracy
drops off rapidly with even small independent perturba-
tions in scale and orientation (e.g., 5 degrees) [2]. An
additional fact worth noting is that several published
works reporting low error rates use different images of the
same person in both classifier training and testing [3], [5].
As facial features arising from different frontal images of
the same person are highly correlated, one cannot know
whether the low classification error reported reflects the
ability of the classifier to generalize to new, unseen faces or
simply classification by recognition.

In the current literature, no work has yet addressed sex
classification of faces from arbitrary viewpoints or in the
presence of occlusion. Only a single approach has proposed
a framework for general visual trait classification based on
image features which can be detected and localized in the
presence of partial occlusion [51], using boosted classifiers
of Haar wavelet features [18]. The approach is single
viewpoint (frontal faces), is not invariant to rotation, and
the reported error rate of 0.21 reflects the increased
difficulty of the combined task. Results obtained are based
on proprietary training and testing databases, in which
faces with ambiguous sex or in-plane orientations greater
than 30 degrees are manually removed, and as such a direct
comparison cannot be made.

3 CLASSIFYING VISUAL TRAITS OF FACES

In realistic scenarios, visual trait classification is inseparable
from detection and localization. Features must first be
detected and localized before they can be used for
classification. We propose embedding these three tasks
within a general appearance model derived from local
scale-invariant features, which can be used to detect,
localize, and classify traits of faces in natural imagery
captured from arbitrary viewpoints. By making use of
recent research extending local invariant feature-based
techniques to modeling 3D object classes [7], [8], [9], our
approach is able to explicitly address visual traits from
arbitrary viewpoints and in the presence of occlusion.

3.1 Viewpoint-Invariant Detection and Localization

Before visual traits can be learned or classified, the image
features reflective of traits must first be detected and
localized (i.e., associated with specific face instances) within
the image, from arbitrary viewpoints and in the presence of
partial occlusion. Recent literature contains several local
feature-based models that offer a means by which this can
be accomplished [7], [8], [9], the requirement being the
ability to identify scale-invariant features in different
images arising from the same underlying structure of the
face. In this paper, we adopt the object class invariant (OCI)
model, which was first presented as a means of viewpoint-
invariant face detection in [7].

In the general case, the OCI model relates scale-invariant
features to an OCI, an abstract 3D geometrical structure
defined with respect to an underlying 3D object class, whose
projection in the image plane maintains a consistent
geometrical interpretation across different viewpoints and
object class instances. The notion of an OCI is related to
3D primitives whose edges exhibit stable “nonaccidental”
properties when projected onto the image plane from
arbitrary views [39]. The projection of a 3D line segment,
for instance, maintains a location, length, and orientation
consistent with the 3D line segment from any viewpoint
within a plane about the line. A 3D sphere projects to a
2D circle whose center and radius remain consistent with the
sphere from arbitrary viewpoints. Early approaches to
viewpoint-invariant detection focused on extracting these
nonaccidental properties, or viewpoint-invariants, directly
from the image. While this is feasible for classes of 3D shapes
such as generalized cylinders [40] and planes [52],
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viewpoint-invariants are difficult to extract directly from
images and occur rarely in natural 3D objects [38].

Rather than extracting viewpoint-invariants directly,
the OCI modeling methodology is to infer a viewpoint-
invariant reference frame probabilistically from scale-
invariant image features. A variety of viewpoint-invariant
OCI parameterizations can be used, according to the
degree of desired invariance. A 3D line segment can be
used for object classes such as faces which are typically
viewed from a coronal plane, as illustrated in Fig. 2. The
projection of such an OCI maintains a location, orienta-
tion, and magnitude which are geometrically consistent
with the head over a 360 degree range of viewpoint
around the head (the OCI can be inferred even from rear
views). The magnitude of the line segment vanishes in
underhead or overhead views, however. Invariance from
arbitrary viewpoints can be obtained via a 3D sphere
centered about object class instances or a collection of
orthogonal 3D line segments.

The appearance of a face can be described in terms of an
OCI o and a set of scale-invariant image features fmig. A
feature is denoted as mi : fmg

i ;m
a
i ;m

b
ig and consists of

variables of geometry mg
i , appearance ma

i , and occurrence
mb
i . Feature geometry mg

i : f�i; �i; xig is a scale-invariant
geometrical description of the feature in an image, includ-
ing its scale �i, orientation �i, and absolute image (row, col)
location xi. Feature appearance ma

i represents the image
content within the region specified by the feature geometry
and can be represented in a number of ways, e.g., principal
components [15] or histograms of gradient orientations [20].
Feature occurrence mb

i is a binary variable representing the
presence or absence of a feature. The OCI is denoted as
o : fog; obg consisting of variables of geometry og and
occurrence ob. Geometry og is a viewpoint-invariant
reference frame, which in the case of a 3D line segment

OCI is equivalent to the geometry of a scale-invariant
feature mg

i , and ob represents OCI presence or absence. Note
that this OCI definition is similar to that of a model feature
but lacks an appearance component, as an OCI is not
directly observable and must be inferred from image data.

The relationship between OCI o and model features fmig
can be described probabilistically as

pðojfmigÞ ¼
pðoÞpðfmigjoÞ
pðfmigÞ

¼ pðoÞ
Q

i pðmijoÞ
pðfmigÞ

; ð1Þ

where the first equality results from Bayes rule and the
second from the assumption of conditional feature inde-
pendence given the OCI. With the conditional indepen-
dence assumption, modeling focuses on pðmijoÞ defining
the relationship between an individual feature and the OCI,
which can be expressed as

pðmijoÞ ¼ p
�
ma
i jmb

i

�
p
�
mb
i job
�
p
�
mg
i job; og

�
; ð2Þ

under the assumptions of 1) conditional independence of
feature appearance/occurrence fma

i ;m
b
ig and feature

geometry fmg
ig given the OCI o, 2) conditional indepen-

dence of feature appearance ma
i and the OCI o given

feature occurrence mb
i , and 3) conditional independence of

feature occurrence mb
i and OCI geometry og given OCI

occurrence ob. In (2), pðma
i jmb

iÞ represents feature appear-
ance given presence, and can be modeled as a Gaussian
assuming additive noise. pðmb

i jobÞ represents the binomial
probability of feature occurrence given reference frame
occurrence. pðmg

i job; ogÞ represents the residual error in
predicting the reference frame geometry from the feature
geometry, and can be modeled as Gaussian assuming
additive noise. Note that the scale parameters are treated
in the log domain, and location parameters are normal-
ized by the reference frame scale.

Learning the OCI model requires estimating the para-
meters of the distributions in (2) from data. This can be
done applying a supervised learning technique to natural
imagery acquired from arbitrary viewpoints as follows.
First, OCIs are manually labeled in a set of training
images, and scale-invariant features are automatically
extracted in all training images. In the case of a linear
OCI, labeling can be accomplished by drawing a line
segment on training images which maintains a geometri-
cally consistent interpretation across different viewpoints
and face instances, e.g., the line from base of the nose to
the forehead in face images shown in Fig. 2. With labeled
OCIs and extracted features, learning proceeds by identi-
fying clusters of features that agree in terms of their
appearances and their geometries with respect to the OCI,
where each such cluster represents a single underlying
model feature mi. As the number of clusters is initially
unknown, iterative clustering techniques requiring initi-
alization such as K-means [53] are infeasible. Instead, a
robust clustering technique similar to the mean-shift
algorithm [54] is used to identify dense clusters of features
that agree in terms of appearance and geometry.

Clustering proceeds by treating each extracted feature as
a potential model feature mi. A feature mj is said to agree
geometrically with mi if, when normalized according to
their geometries mg

i and mg
j , their respective OCIs ogi and ogj
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Fig. 2. The viewpoint-invariant OCI model relating scale-invariant
features (white circles) to an OCI (solid white arrows). The OCI, defined
here as a line segment from the base of the nose to the forehead,
represents a viewpoint-invariant mechanism for grouping scale-invariant
image features in images acquired from arbitrary viewpoints. A
probabilistic model is learned from manually labeled OCIs in training
images acquired from arbitrary viewpoints (four images to the left).
Model instances can then be robustly detected and localized in a new
image (right) acquired at an arbitrary viewpoint based on detected model
features (dashed black lines) that agree on an OCI (dashed white
arrow). Note that OCI shown here 1) exploits the symmetry of faces
allowing mirror feature correspondence and 2) is not designed for
overhead/underhead views.
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differ by less than a set of scale-invariant thresholds Tg :
fT�; T �; Txg in scale T�, orientation T�, and location Tx.
These thresholds are applied independently; note that
location difference is normalized according to the image
scale of ogi and scale difference is calculated in the log
domain. Features mj that agree geometrically are consid-
ered as events ob¼1 and those that do not agree are
considered as events ob¼0. Note that Tg represents the
maximum acceptable error in predicting the OCI geometry,
and thus, a single empirically determined threshold is
applicable for all features.

Two features are said to agree in terms of appearance if

the difference between their appearances ma
i and ma

j is less

than an appearance threshold Tai . Features mj that agree in

appearance are considered as events mb¼1
i and those that do

not agree are considered as events mb¼0
i . Unlike the global

geometrical threshold Tg, the appearance threshold Tai is

feature-specific and determined by the image content of

individual features. A low threshold will not capture the

full range of appearance variability of geometrically similar

features, whereas a high threshold will include the

appearance ranges of geometrically unrelated features and

lead to false correspondences. Here, Tai is automatically

determined to maximize the likelihood ratio
pðmb¼1

i job¼1Þ
pðmb¼1

i job¼0Þ, i.e.,

the ratio of geometrically agreeing versus disagreeing

features. Note that this ratio can be considered a measure

of feature distinctiveness [27]. After learning, poorly

distinctive or redundant features can be pruned in order

to improve performance.
Once learned, the OCI model can be used to automati-

cally detect and localize faces in a new image as follows.
Features are first extracted in the new image and matched
to model features. An image feature m is said to match a
model feature mi if the difference in their appearance
representations is less than the learned appearance thresh-
old Tai . Each model-to-image match implies the geometry of
an OCI og in the new image, and clusters of similar
geometries og suggest the presence of a valid OCI. Different
hypotheses ogi and ogj are considered as belonging to the
same cluster if their difference is less than the global
geometrical threshold Tg used in model learning. The
hypotheses that a particular OCI cluster results from a true
OCI instance ob¼1 or noise ob¼0 can be tested using a Bayes
decision ratio

�ðogÞ ¼ pðo
g; ob¼1jfmigÞ

pðog; ob¼0jfmigÞ
;

¼ pðo
g; ob¼1Þ

pðog; ob¼0Þ
Y
i

pðmijog; ob¼1Þ
pðmijog; ob¼0Þ :

ð3Þ

In (3), factor pðog;ob¼1Þ
pðog;ob¼0Þ is a constant representing the prior

ratio of valid versus invalid OCI og occurrences, and
pðmijog;ob¼1Þ
pðmijog;ob¼0Þ represents the likelihood ratio of a true versus

false feature match.
An important issue is that of defining a suitable OCI

reference frame when modeling faces or general object
classes. While the OCI must maintain a consistent geometrical

interpretation across viewpoints and object class instances,
the particular OCI definition is arbitrary and can be
specified in a number of ways. For the purpose of
supervised learning, an OCI can be manually specified
according to features of interest common to instances of a
class. The line along the nose in Fig. 2 is easy to label when
modeling faces in images acquired from arbitrary view-
points around the head, for example. In terms of optimality,
an OCI located centrally with respect to features in the
image plane minimizes model localization error, as OCI
localization error increases with the distance between the
feature and the OCI origin [55]. An optimal OCI minimizing
localization error can be derived in a data-driven manner by
iteratively learning the model feature densities in (2), then
reestimating OCI labels in training images by maximizing
�ðogÞ in (3). This iterative learning process is demonstrated
later in experimentation in the context of face images.

3.2 Learning and Classifying Facial Traits

The OCI model described in the previous section can be
learned from a set of natural, cluttered training images
acquired from arbitrary viewpoints around the face, and
used to identify occurrences of the same model features mi

in images of new faces. Our hypothesis is that some of these
features bear information regarding visual traits, and that
once detected and localized, can be used to classify faces.
We propose training a classifier via a supervised learning
procedure to classify faces in terms of visual traits, using the
co-occurrence statistics of individual features with the trait
of interest. To do this, we define fi ¼ mb¼1

i to be the random
event of positive occurrence of model feature i, and we
expand the random event ob¼1 of positive OCI occurrence
into a discrete random variable c : fc1; . . . ; cKg over K trait
values of interest, e.g., sex : ffemale;maleg. A Bayesian
classifier  ðcÞ can then be used to express the most probable
trait classification given a set of M model feature
occurrences ffig. Under the assumption that model features
fi are conditionally independent given trait c, this can be
expressed as

 ðcÞ ¼ pðcjffigÞ
pð�cjffigÞ

¼ pðcÞ
pð�cÞ

YM
i

pðfijcÞ
pðfij�cÞ

;

or, equivalently,

log ðcÞ ¼ log
pðcÞ
pð�cÞ þ

XM
i

log
pðfijcÞ
pðfij�cÞ

: ð4Þ

In (4), pðcÞpð�cÞ represents a prior ratio of trait value presence c

versus absence �c (e.g., male versus not male), controlling

classifier bias toward different trait values, and pðfijcÞ
pðfij�cÞ

expresses the likelihood ratio of trait value presence c versus

absence �c coinciding with observed feature fi. The optimal

Bayesian classification is to choose trait value c� maximizing

log ðcÞ

c� ¼ argmax
c
flog ðcÞg: ð5Þ

Classifier training requires estimating pðcÞ
pð�cÞ and pðfijcÞ

pðfij�cÞ in (4).

Features that are important to classification or highly
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informative with regard to a particular trait value cj will

have high likelihood ratios, as illustrated in Fig. 3. The focus

of our approach is to use these likelihood ratios to quantify

the association of model features with visual traits, as

illustrated in Fig. 4.

Estimating log pðfijcÞ
pðfij�cÞ . In order to estimate the likelihood

ratios, we use a supervised learning process, based on

observed model feature occurrences fi and trait labels cj for

each training image. Discrete class-conditional likelihoods

pðfijcjÞ can be represented as binomial distributions,

parameterized by event counts [56]. During training,

pðfijcjÞ is estimated from pðcjÞ and pðfi; cjÞ, the probability

of observed joint events ðfi; cjÞ, using the definition of

conditional probability

pðfijcjÞ ¼
pðfi; cjÞ
pðcjÞ

: ð6Þ

Term pðcjÞ is important in correcting bias in the training set.

The most straightforward manner of estimating pðfi; cjÞ is

via maximum likelihood (ML) estimation, by counting the

joint events ðfi; cjÞ and normalizing with respect to their

sum. ML estimation is known to be unstable in the presence

of sparse data, leading to noisy or undefined parameter

estimates. This is particularly true in models consisting of
many local features, where feature occurrences are typically
rare events. Bayesian maximum a posteriori (MAP) estima-
tion can be used to cope with data sparsity, and involves
regularizing estimates using a Dirichlet hyperparameter
distribution [56]. In practice, Dirichlet regularization in-
volves prepopulating event count parameters with samples
following a prior distribution embodying assumptions
regarding the expected sample distribution. Where no
relevant prior knowledge exists, a uniform or maximum
entropy prior can be used [57]. Although both ML and MAP
estimates converge as the number of data samples
increases, MAP estimation using a uniform prior will tend
toward conservative parameter estimates while the number
of data samples is low. The final estimator we use is

pðfijcjÞ /
ki;j
pðcjÞ

þ di;j; ð7Þ

where ki;j is the frequency of the joint occurrence event
ðfi; cjÞ, pðcjÞ is the frequency of trait value cj in the training
data, and di;j is the Dirichlet regularization parameter used
to populate event counts. In the case of a uniform prior, di;j
is constant for all i; j. The proportionality constant for the
likelihood in (7) can be obtained by normalizing over values
of fi, but is not required for likelihood ratios.

Estimating log pðcÞ
pð�cÞ . Although individual likelihood ratios

have been corrected for training set bias by the estimator in

(7), the Bayesian classifier in (4) will still exhibit bias due to

the fact that the number of features fi and their corresponding

likelihood ratios associated with different traits are generally

unequal. Given a set ofM features to classify, log ðcÞwill be
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Fig. 3. Illustrating different instances of the same local feature bearing

gender information (white circles), from data set with a male:female ratio

of approximately 3:2. The forehead feature shown in (a) occurs in

30 males and three females and is indicative of male faces. The cheek

feature shown in (b) occurs in zero males and eight females and is

indicative of female faces. The nasal feature shown in (c) occurs in

16 males and 10 females and bears no information regarding sex.

Fig. 4. Illustrating classification of the visual trait of sex from local

features (white circles). A given face instance consists of a set of local

features, a subset of which are reflective of either sex, and it is their

ensemble which determines the final decision. To illustrate, we

describe a feature as strongly male or female if its likelihood ratio of

co-occurring with the indicated sex in training images is greater than

2:1. Of the 63 model features detected in (a), 15 are strongly male

and one is strongly female, suggesting a male face. Of the 31 features

detected in (b), seven are strongly female and one is strongly male,

suggesting a female face. Many features, although very common in

the class of face images, are uninformative regarding sex.
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higher a priori for trait values associated with a larger

number of features or with features bearing higher likelihood

ratios. This bias can be controlled by setting log
pðcjÞ
pð�cjÞ for each

trait value cj such that the expected value of log ðcjÞbased on

a set of M features is zero

E½log ðcjÞ� ¼ E log
pðcjÞ
pð�cjÞ

þ
XM
i

log
pðfijcjÞ
pðfij�cjÞ

" #
¼ 0; ð8Þ

and thus,

log
pðcjÞ
pð�cjÞ

¼ �E
XM
i

log
pðfijcjÞ
pðfij�cjÞ

" #

¼ �ME log
pðfijcjÞ
pðfij�cjÞ

� �
;

ð9Þ

where the expectation in the right-hand side of (9) is taken
with respect to the conditional probability of fi given OCI
occurrence ob¼1:

E log
pðfijcjÞ
pðfij�cjÞ

� �
¼
X
i

p
�
fijob¼1

�
log

pðfijcjÞ
pðfij�cjÞ

: ð10Þ

Thus, term log
pðcjÞ
pð�cjÞ is the product of the expected likelihood

ratio for trait cj calculated during training from (10), and

the number of features M associated with a detected face to

be classified.

4 EXPERIMENTATION

In this section, we present experimentation addressing the
classification of face sex from arbitrary viewpoints and in the
presence of occlusion. We begin by describing the experi-
mental setup in Section 4.1. A qualitative view of model
features as visual cues of sex is presented in Section 4.2.
Quantitative experimentation consists of four main sections.
Section 4.3 describes classification performance from
arbitrary viewpoints while varying the amount of training
data. Section 4.4 compares OCI modeling and Bayesian
classification with the alternative approaches of bag-of-
words modeling and SVM classification. Section 4.5 reports
an analysis of classification performance in the presence of
artificial occlusion. Finally, Section 4.6 details results for
detection, localization, and sex classification on a subset of
images from the cluttered CMU database.

4.1 Experimental Setup

Data. Our evaluation focuses on the performance of
combined face detection, localization, and sex classification.
All training is based on the standard, publicly available
color FERET face image database [13]. Testing is performed
on the FERET database and on a subset of the cluttered
CMU profile database [12]. The FERET database consists of
images of 994 unique subjects of various ethnicity, age, sex,
acquired from various viewpoints, illumination conditions,
with/without glasses, etc. The FERET database does not
necessarily represent a challenging scenario for detection
and localization; however, it is the standard for evaluating
and comparing sex classification of faces. We build a
database of 994 images, one for each FERET subject, where

each subject image is chosen at random from a 180 degree
viewpoint range (i.e., from left to right profile images). In
this way, no subjects are duplicated in either testing or
training data, in order to evaluate the generality of our
approach. The male:female ratio in the database is
approximately 3:2 (591:403). Fig. 5 shows the distributions
of male and female data over viewpoint, which are
consistent with the 3:2 ratio and do not exhibit significant
sex-related bias. Images are converted to gray scale and
processed at a resolution of 256� 384 pixels.

Scale-invariant feature extraction. Scale-invariant fea-
tures are automatically extracted from all images used in
training and testing. Although a variety of different features
can be used, we use the scale-invariant feature transform
(SIFT) technique [20] for feature detection and appearance
description based on an implementation made public by the
author. The SIFT feature detection method is based on
identifying minima and maxima in a difference-of-Gaussian
scale-space pyramid, and has been shown to outperform
other techniques in terms of detection repeatability [58]. The
SIFT appearance representation involves transforming the
image content associated with features into a histogram of
gradient orientations, and has been shown to be superior to
other representations in terms of detection performance in a
variety of natural image scenes [59].

Appearance model learning. As mentioned, recent
literature contains several models that could be potentially
used to learn the appearance of faces from local invariant
features. We learn viewpoint-invariant OCI face models from
training data using the procedure outlined in Section 3.1, with
face OCIs manually labeled as line segments from the base of
the nose to the forehead. To test the optimality of this OCI
labeling, the iterative model learning and OCI reestimation
procedure described in Section 3.1 is performed on a set of 500
FERET images. Fig. 6 illustrates how the OCI converges to an
optimal value corresponding to a line located centrally within
the head, thereby minimizing the distance between face
features and the OCI. In [55], this optimal OCI definition
results in face detection performance which is only margin-
ally superior to that of the original OCI, indicating that the
OCI labeled along the nose is already near-optimal for
modeling the face.

Classifier training from modeled features. Once the OCI
face model has been learned, model feature occurrences
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Fig. 5. The viewpoint distributions for the 403 female and 591 male

unique FERET subject images used in experimentation. Note that, due

to face symmetry, only the absolute value of the viewpoint is considered.
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identified in training images along with FERET sex labels
are used to estimate likelihood ratios of the Bayesian trait
classifier, as described in Section 3. In estimating like-
lihood ratios via (7), we used an empirically determined
Dirichlet regularization parameter of di;j ¼ 2, which max-
imizes training set classification performance.

Detecting and localizing faces in new images. Once the
appearance model and classifier have been learned, fully
automatic detection, localization, and classification proceed
on testing images, as described in Section 3.1. Viewpoint-
invariant face detection and localization are performed by
determining the OCI instances in each of the testing images,
maximizing the Bayes decision ratio in (3). The threshold
values of Tg used to evaluate geometrical consistency for
OCI localization are T� ¼ logð1:5Þ, T� ¼ 20 degree, and
Tx ¼ OCI scale/2.

Classifying faces in new images. Once an OCI instance
is detected in a new image, model features associated with
the instance are then used to determine sex using the
Bayesian classifier in (4). As faces are either male or
female, determining face sex is a two-class problem and,
thus,  ðmaleÞ ¼  ðfemaleÞ�1. A single-threshold  � on
 ðcÞ can be used such that faces are classified as either
male if log ðmaleÞ >  � or as female if log ðmaleÞ <  �.

Classification results are reported in terms of the equal
error rate (EER), i.e., the threshold at which the
probabilities of misclassifying males and females are
equal.

4.2 Identifying Visual Cues of Sex

As humans, we are generally capable of describing faces in
terms of visual traits such as sex or age, however, it is often
difficult to identify the visual cues that are operative in
determining these traits. Most faces contain a variety of cues
that could be construed as either male or female, and it is
their ensemble which determines the final decision. The
local feature-based approach provides insight in terms of
what local image cues are most important in determining
visual traits, insight which is not possible from other
representations, e.g., global features or templates. By
sorting features according to their likelihood ratios, the
image regions most telling regarding the trait of sex can be
visualized as in Fig. 7. Features on the ears and forehead are
often indicative of males, as they are less visible in females
due to generally longer female hair. Different features
around the mouth, eyes, and cheeks can be strongly
indicative of either males or females, possibly due to sex
differences relating to facial stubble, makeup, and hair. In
many cases, the relationship between facial features and sex
may not be obvious or easily explained. Certain model
features arising from the nose or cheeks, although very
common in faces, are uninformative regarding sex. Note
that although the male:female ratio in training data is 3:2,
approximately twice as many sex-related features are
identified for males as for females, suggesting a greater
number of visual cues characteristic of the male sex.

4.3 Classifying Sex from Arbitrary Viewpoints

In order to evaluate sex classification from arbitrary view-
points, 15 different trials of training, localization, and
classification are performed. Five training set sizes of 100,
200, 300, 400, and 500 face images are used, and for each size,
three training sets are randomly selected from 994 images. In
this way, both cross validation and training efficacy can be
investigated. Fig. 8 illustrates the classification error as a
function of training set size. As expected, classification error
decreases with an increase in the number of training data.
This is primarily due to the emergence of more rare, yet sex
informative, features. Examples of correctly classified faces
are shown in Figs. 9a, 9b, and 9c, and examples of incorrectly
classified faces are shown in Figs. 9d, 9e, and 9f. For trials
based on 500 training images, approximately 3.6 percent of
error cases are due to poor model localization, where the
discrepancy between the localized and labeled OCIs is
greater than the geometrical consistency threshold Tg.

Table 1 illustrates the distribution of classification EER
over three ranges of viewpoint for trials involving 500 sub-
jects, ranging from frontal (0 degree-22 degree) to profile
(67 degree-90 degree) views. Note that the error rate for
profile views is almost double that of frontal views, reflecting
the difficulty of classifying nonfrontal faces. This appears to
be due to the fact that nonfrontal views generally contain
fewer model features. Note also that the EER for frontal views
here (11.9 percent) is somewhat higher than error rates
obtained by other frontal face classifiers (4-10 percent) [2], [3],
[4], [5], [6].
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Fig. 6. The progression of iterative model learning and OCI reestimation
in training images, for 0, 10, 20, and 30 iterations. In iteration 0, all OCIs
are manually initialized as line segments from the base of the nose to
the forehead. Little change occurs for OCIs after 30 iterations in frontal
views, which are already approximately central to image features arising
from the face. In oblique and profile views, OCI locations recede to the
cheeks, minimizing the average distance to image features character-
istic of these views (e.g., ears, cheeks, eyes). Note that the OCIs in all
views remain consistent with 3D geometry of the face, corresponding to
the 2D projections of the same 3D line segment located within the head.
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4.4 Comparison to Alternative Techniques

Given that FERET images contain faces which are
reasonably centered within the image and relatively little
background clutter, several questions arise regarding sex
classification performance. First, how important is the
localization of SIFT features via the OCI model to the
classification result? Geometry-free bag-of-words (BOW)

models [27], [60], [28] can be computed independently of
viewpoint, and could potentially be used to classify
FERET faces acquired from arbitrary viewpoints according
to sex. Second, how effective is the Bayesian classification
technique? Sex classification could be achieved by apply-
ing other black-box methods such as SVMs [61] to features
identified by either the OCI or BOW models.

We investigate these questions by experimenting with
both BOW modeling and SVM classification. BOW models
are constructed from training images and used as a basis for
sex classification. This is done by clustering SIFT features
using the K-means algorithm, thereby defining a set of
model features or “visual words.” K-means requires defin-
ing the number of words, values of 1,000, 5,000, 10,000; and
15,000 words are used, in the same order of magnitude of
values proposed in the literature [60], [28]. The BOW model
is fit to new images by matching SIFT features extracted in
the new image to their nearest neighbor model features,
based on the Euclidean distance, and binary vectors of BOW
feature occurrence are used in classification. Classification
performance generally improves going from 1,000 to
10,000 words, after which 10,000 and 15,000 word models
result in similar performance. Results for 15,000 word BOW
models are reported here.

Sex classification is also performed via the SVM
technique. Briefly, SVM classification is based on
identifying hyperplanes which maximally separate feature
data arising from different classes. The input to the SVM
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Fig. 7. Visual cues indicative of face sex, in the form of scale-invariant features. Features are sorted in increasing order of their log likelihood ratio

log pðfi¼1jmaleÞ
pðfi¼1jfemaleÞ . Of approximately 15,000 features in a viewpoint-invariant face model learned from 500 randomly selected FERET images,

approximately 3,000 features bear information regarding sex (i.e., j log pðfi¼1jmaleÞ
pðfi¼1jfemaleÞ j > 0:5). Features in the lower left occur more frequently in

females, and features in the upper right occur more frequently in males. Face images shown illustrate instances of sex-informative features (white

circles) with absolute log likelihood ratios ranging from 1.3 to 2.0. Although the male:female ratio in the training data is 3:2, approximately twice as

many sex-reflective features are associated with males. Note that SIFT features shown generally arise from image content in a region slightly larger

than the circles indicated in the images.

Fig. 8. The classification equal error rate (EER) as a function of the
number of faces used in training. For each training set size, three
different sets of training data are randomly selected and classification is
performed on the remaining face images not used in training. The points
and error bars indicate the EER mean and the standard deviation for the
indicated training set size. Note that the mean EER generally diminishes
with an increase in training set size. The minimum mean EER achieved
here is 16.3 percent for a training set size of 500 images.
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classifier is equivalent to that of the Bayesian classifier, i.e., a

set of positive model feature occurrences for each face image

to be classified along with sex labels for classifier training. The

SVM is defined by a kernel function, two popular choices are

the radial basis function (RBF) kernel [5] and the linear kernel

[60]. Both kernels involve a free parameter C relating to the

classification error margin and the RBF requires an parameter

� defining the width of the RBF kernel. A search over kernels

and parameters is performed in order to determine the

parameter combination which results in the best SVM sex

classification performance. The optimal SVMs are RBF

(parameters � ¼ 1:0e� 13, C ¼ 1:0e12) for BOW classifica-

tion and linear (parameterC ¼ 20) for OCI classification. The

SVM implementation used is the open source LIBSVM
package [62].

Experimentation tests all combinations of models (BOW,
OCI) and classifiers (SVM, Bayesian). All trials are based on
three random partitions of the data into 500 training and
494 testing images, and the results are shown in Table 2. In
general, classification based on the OCI model is superior to
that of the BOW model for either classifier. This suggests
that the localizing features geometrically within a reference
frame such as the OCI is important for classification.
Furthermore, while Bayesian and SVM classification are
similar for the BOW model, Bayesian classification is
marginally superior for the OCI model.

Interestingly, while Bayesian classification outperforms
SVMs for determining sex from face images, the opposite
has been found for classifying images according to
distinctly different scene categories such as faces, buildings,
and cars [60]. One hypothesis for this difference is as
follows: SVMs generally exploit dependencies between
different image features when determining hyperplanes
separating data. Such interfeature dependencies are likely
more prominent in distinctly different scene categories than
in face images of different sexes, where features tend to
occur infrequently and independently in both sexes, and
may be missing due to occlusion. A Bayesian classifier
based on the assumption of conditionally independent
features avoids relying on feature interdependencies, and
therefore, results in improved performance.

4.5 Classifying Sex from Occluded Faces

Classifying faces according to visual traits in arbitrary
scenes is complicated by occlusion, as features useful for
classification may not be visible. In the case of face images,
occlusion can arise from a number of factors, such as
sunglasses, hats, hairstyles, scarves, crowds. The effect of
occlusion has not been previously investigated in the
context of face classification, as most previous work has
assumed that facial features required for classification are
visible and precisely localized. Classification based on local
features is capable of coping with a significant degree of
occlusion, as only a subset of features is required.

We test occlusion by artificially obscuring each FERET
testing image with a black occluding circle, and then
performing classification trials using the three classifiers
trained on 500 images described in the previous section. The
black circle is placed in the center of the images, thereby
obscuring a variety of different facial regions in different
images, as faces are approximately but not precisely
centered in the FERET dataset. The degree of occlusion is
varied by changing the radius of the occluding circle from 0
to 80 pixels. The occluding circle border is blended
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Fig. 9. Examples of correctly and incorrectly classified faces in trials
involving 500 training images. Features shown are those detected and
used in classification, and arrows indicate detected OCIs. Blue features
indicate male characteristics and pink features indicate female
characteristics, where the color saturation is proportional to the
magnitude of the log likelihood ratio. Note that most faces contain
features indicative of both male and female sexes. The top row
illustrates correct classifications, where images (a) and (c) are female
faces and image (b) is a male face. The bottom row illustrates incorrect
classifications. Image (d) is misclassified as male due to model
localization failure. Here, strong backlighting results in poor image
contrast in the face, and thus few scale-invariant features. Image (e) is a
female face misclassified as male, due to an excess of strong male
characteristics. Image (f) is a male face misclassified as female, due to
an excess of female features.

TABLE 1
The Data Distribution and Mean EERs for Three Ranges of
Face Viewpoint in All Trials Based on 500 Training Images

TABLE 2
Sex Classification EERs for Combinations

of Models (BOW, OCI) and Classifiers (SVM, Bayesian)
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smoothly into the face images using a small Gaussian kernel
with a standard deviation of 2 pixels, to simulate a more
natural occluding contour.

Fig. 10 illustrates examples of occlusion and the
classification error as a function of occluding circle radius.
Note that classification performance degrades gracefully
with an increase in the occluding circle radius, as sex-
informative features can still be extracted and used for
classification in nonoccluded regions of the face. Even at a
reasonably large occluding circle of radius 40 pixels,
classification error is approximately 25 percent. At an
occluding radius of 80 pixels, classification error reaches
approximately 0.4, the rate of female faces in the data set.
Note that the standard deviation of classification error does
not generally change significantly with the degree of
occlusion, indicating that error variability is determined
by the amount of training data and not by the number of
features identified in the image.

4.6 Detecting, Localizing, and Classifying Faces in
Clutter

In this section, we investigate localization, detection, and
classification of faces in cluttered data. Despite the ubiquitous
nature of face imagery, there is currently no standard
database of cluttered faces captured from arbitrary view-
points with sex labels. We thus perform experimentation

using CMU profile database, a challenging database of
cluttered face imagery used to benchmark face detection
performance [12]. OCI model detection and localization
performance is limited by the underlying feature detector,
and modeling based on SIFT features is ineffective for low
resolution faces which produce few detector responses. We
thus select a subset of the largest CMU faces for testing as
follows: We select all images from the CMU profile
database containing a face with a distance of 19 pixels or
greater from the eye to the nose, as determined by ground
truth profile face labels. From this image set, we consider all
faces (profile or otherwise) for which the distance from the
point between the eyes to the nose is 19 pixels or greater.
This results in a set of 132 faces, which is manually
determined to contain 100 males and 32 females. Note the
bias toward the male sex, from inspection the male:female
ratio over the entire CMU profile data set appears to be
approximately 6:1.

Detection and localization of CMU faces are performed
using an OCI model learned from 500 FERET faces. Sex
classification is then performed on faces correctly localized
with respect to ground truth labels, using Bayesian and
SVM classifiers trained on 500 FERET faces. We evaluate
sex classification on the sets of 25, 50, and 100 faces
detected with the highest precision, in order to illustrate
the degradation of sex classification performance with
detection precision. Fig. 11a illustrates the precision-recall
characteristic of detection, along with sex classification
error rates at the indicated values of precision. In order to
prune multiple detection hypotheses arising from the same
face, all hypotheses within the geometrical threshold Tg of
hypotheses bearing locally maximal Bayes decision ratios
are removed. Classification performance generally de-
grades with decreasing detection precision, as both are
linked to the number of images features extracted in
each localized face. Here, Bayesian classification generally
outperforms SVM classification by larger margins than in
trials on FERET imagery, suggesting that Bayesian classi-
fication generalizes more readily to the context of cluttered
imagery. Fig. 11b illustrates an example of OCI detection,
localization, and classification in a cluttered scene contain-
ing faces in arbitrary viewpoints and partial occlusion.

5 DISCUSSION

In this paper, we present a general approach to learning and
classifying visual traits of faces from arbitrary viewpoints
and in the presence of occlusion. As a realistic classification
scenario requires first detecting and localizing faces and
associated features prior to trait classification, we base our
classifier on a viewpoint-invariant appearance model of
local scale-invariant features, which can be used to detect
and localize faces in images acquired from arbitrary
viewpoints. A Bayesian visual trait classifier is constructed
from modeled features, where classifier training involves
estimating the likelihood ratios of model feature occurrence
given trait presence versus absence. Features associated
with significantly nonzero likelihood ratios can be inter-
preted as visual cues reflective of the trait of interest.

We present the first experimental results for face sex
classification from arbitrary viewpoints, based on the
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Fig. 10. (a) Examples of detection and localization for occluding circles
of radii of 0, 40, and 80 pixels (left to right). (b) Classification error as a
function of the degree of occlusion. For each occluding circle radius,
three different classification trials are performed using the three
classifiers in the previous section trained on 500 images, based on
occluded images not used in training. The points and error bars indicate
the mean and the standard deviations of the classification error for the
indicated radius. Classification error starts at 16.3 percent with no
occlusion and rises to approximately 37.7 percent for a radius of
80 pixels.
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standard FERET database, obtaining an EER of 16.3 percent
for over a 180 degree range of face viewpoint. Classification
error is lowest in frontal views, and error for profile views is
approximately twice that obtained for frontal views. The

EER of 11.9 percent obtained by our classifier for frontal
faces is higher than that of other approaches, suggesting
that the resistance to occlusion offered by the local feature
approach may come at the cost of slightly reduced
classification performance under ideal circumstances. We
present results of sex classification in the presence of

simulated occlusion. Classification error degrades smoothly
with an increase in the degree of occlusion, demonstrating
the capacity of local feature-based classification to cope
with missing features. Quantitative comparisons with
geometry-free BOW model show that sex classification is
significantly improved by the geometrical constraints

afforded by the OCI model. Furthermore, Bayesian sex
classification results in lower error than SVM classification,
particularly in the cluttered, occluded scenes from the CMU
profile database. This runs contrary to classification of

general scenes, where SVM classification has been shown to
be superior [60].

The framework we present is general and may prove
useful in modeling and classifying a variety of different
object classes and/or visual traits. We experimented with
learning the trait of age, by dividing faces into less than/
greater than 25 years of age, splitting the FERET data set
approximately evenly. A somewhat high classification error
rate of 23 percent was obtained from the framework trained
on 200 frontal faces, indicating that age classification is a
more difficult problem than sex. We also applied the
general OCI framework to modeling brain anatomy in
magnetic resonance imagery using an OCI defined accord-
ing to a standard neuroanatomical reference frame [63], and
subsequently achieved a brain sex classification accuracy of
�80 percent.

The effectiveness of our framework in the general case
depends on the appearance characteristics of the object class
and the traits to be modeled. Viewpoint-invariant OCI
modeling is most effective for object classes which produce
similar distinctive image features across different instances,
e.g., bicycles or cars. For these two classes, we have
achieved similar detection performance with fewer training
images than the method of [10] which models viewpoint
information explicitly. As trait classification follows detec-
tion and localization, the cardinality of training sets
required for classification is generally equal to or greater
than for detection alone, and ultimately depends on the
degree of information shared between image features and
trait values. To illustrate, we investigated detection and
design classification of motorcycles from the PASCAL 2006
database [45], using an OCI in the form of a sphere centered
on the motorcycle. The average detection precision obtained
was 0.159, which lies within the range of [0.153, 0.390]
reported for other methods and could potentially be
improved by further investigating feature selection techni-
ques such as boosting. Classification was then performed
based on motorcycle design labels of sport:offroad:moped:
other, these were feasible to label manually from prototype
examples provided in [47]. The numbers of instances were
56:32:21:166 in training and 81:37:21:135 in testing, and the
classification EERs for the 50 testing motorcycles detected
with the highest precision were sport ¼ 0:45, offroad ¼ 0:4,
and moped ¼ 0:3. These results were encouraging, particu-
larly given the small numbers of training instances,
the range of intradesign variability over viewpoint and
interdesign ambiguity. Here, the moped was qualitatively
most distinctive in appearance and also most effectively
classified, while sport and offroad designs were qualita-
tively less distinct (e.g., due to design hybridization) and
more difficult to classify.

Various future avenues exist for detection and visual
trait classification from local scale-invariant features. The
computational complexity of detection, localization, and
classification is low, and the combined system should be
implementable in real or near-real time. Continuous-valued
traits such as age could potentially be modeled using
continuous-valued likelihoods in a regression framework.
Facial traits such as age or emotion could be modeled and
used as a soft biometric in interactive image-based
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Fig. 11. (a) The precision-recall characteristic of detection and
localization based on 132 faces of the CMU database. Classification
EERs are displayed for the top 25, 50, and 100 detected faces. (b) An
example of correctly localized and classified faces in a cluttered scene.
White arrows overlaying the central image indicate correctly identified
OCIs. Features overlaying thumbnails indicate instances of model
features involved in localization and classification for each face. Blue
features indicate male characteristics and pink features indicate female
characteristics, where the color saturation is proportional to the
magnitude of the log likelihood ratio. Note that successful classification
is possible despite the high degree of occlusion in the rightmost face.
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applications, surveillance, or recognition. Classification
performance could be potentially improved by incorporat-

ing feature types other than SIFT which offer complemen-

tary information [64] or by using alternative techniques to
identify learned features more reliably, e.g., sliding-win-

dow-based scanning. In particular, reliable invariant feature
extraction in low-image resolution images would improve

modeling for small faces and objects. Whether multiple

traits such as age and sex are best modeled independently
or jointly is an open research question. The Bayesian

classifier we present could be used for either, however, joint

modeling may be computationally complex for large
numbers of different traits.
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