

An Associate-Predict Model for Face Recognition FIPA Seminar WS 2011/2012

Mykola Volovyk, 19.01.2012

INSTITUTE FOR ANTHROPOMATICS, FACIAL IMAGE PROCESSING AND ANALYSIS YIG

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

Introduction

- Motivation
- Related works

Basic ideas

- Approach scheme
- Identity data set
- Face components features
- Settings estimation

Approach

- Appearance-prediction
- Likelihood-prediction
- Switching mechanism

Results

Introduction Basic ideas Approach Results

Motivation

Different pose

Different expression

Different illumination

Simply different

Motivation: the same / different settings

- Jeff Hawkins's "On intelligence" brain study
- Two types of face matching
- 1) Similar settings
 - Direct matching (just measure component distances and compare them)

2) Different settings

- Distances not informative \rightarrow direct matching inefficient
- Life full of faces \rightarrow our memory == big face image gallery
- Use memory as bridge between two images
- Associate-predict matching

Motivation: different settings

Different settings

- 1) associate in memory database similar faces
- 2) predict from memory similar faces under searched settings
- 3) direct matching

Related works

Attribute and Simile Classifiers by Kumar et. al [ICCV 2009]

Introduction Basic ideas Approach Results

Karlsruhe Institute of Technology

Memory

People's memory == Machine's gallery

Memory

Karlsruhe Institute of Technology

Goal

- Main goal of our approach: to deal with intra-personal variation
 Basic idea:
 - By different settings

A

Find in the gallery suitable bridge between two compared images
 Two steps

Association step

First step: Associate face B with the most alike group from memory

Karlsruhe Institute of Techno

Prediction step

- Second step: Find the image with searched settings
- That will be our predict

Details about settings estimation – in further slides

Big picture

Memory

200 ids (persons) from Multi-PIE (CMU Face Database)
For each person: 7 poses, 4 illuminations, 1 expression

Feature extraction

Four landmarks automatically detected

Alignments for 12 components

Component representaion

Descriptors

LBP

- **extract** intensity for each pixel and its neighboring
- invariant to rotation and grayscale (intensity) changes

SIFT

- Differences of Gaussians (DoG) invariant to rotation and image scale
- 1) DoG \rightarrow scale-space extrema regions
- 2) gradients \rightarrow keypoints description

LE

- extract local microstructures (e.g., edges, lines, spots, flat areas)
- invariant to grayscale changes

Gabor

- **robustness** against varying brightness, varying contrast
- certain amount of robustness against translation, distortion, rotation, and scaling

Setting estimation

Introduction Basic ideas Approach Results

Associate-Predict Model

"Associate" the component

- Measure distances between extracted feature vectors (A, gallery images)
- -Take the nearest id (person)

Appearance prediction

Appearance prediction

Prediction possibility **b**) Likelihood-prediction

"Associate'

Memory

- 20 ids = negative samples (20/200 = 10%)
- Select K number of "positive" ids (nearest neighbors)
- By associate-step instead of
 1 nearest neighbor, we select K nearest
 neighbors (K the most similar ids)

Positive sample set = K * (# images per person) +1 input-image

Or subset of this number

Rest: negative samples

Negative

We separate positive/negative with LDA:

- For each new sample B
 - LDA tells us: P(B belongs to the positive sample set) = ?

- Build A-Classifier + feed new sample B \rightarrow Likelihood distance d_A Build B-Classifier + feed new sample A \rightarrow Likelihood distance d_B
 - Average: $d_p = \frac{1}{2}(d_A + d_B)$

• With weights:
$$d_p = \frac{1}{\alpha_A + \alpha_B} * (\alpha_A * d_A + \alpha_B * d_B)$$

• d_p < Threshold \rightarrow the positive sample

Karlsruhe Institute

Switching mechanism

Pair A, B is Comparable if

Not comparable

else

 $|P_{A} - P_{B}| = 6$

 $|L_A - L_B| = 3$

Switching mechanism

Final matching distance:

Switching <u>reduces risk</u> of inaccurate association/prediction

Introduction Basic ideas Approach Results

- Training set
 - Multi-PIE: 200 persons (from CMU, over all 337 persons, >750,000 images)
- Test sets
 - **Multi-PIE**: 49 persons mutually exclusive to training set
 - 10 folds cross-validation
 - Each fold has 300 intra-personal pairs, 300 extra-personal pairs
 - **LFW** (Labeled Faces in the Wild, over all 5749 people, >13.000 images)
 - <u>Restricted protocol</u> (fixed number of intra-personal and extra-personal pairs provided for training)
 - 10 folds cross-validation
 - Each fold has 300 intra-personal pairs, 300 extra-personal pairs
 - <u>Unrestricted protocol</u> (random number of training pairs can be generated based the given faces' labels)

Holistic vs. Component on Multi-PIE

Effect of positive sample number for likelyhood-prediction on Multi-PIE benchmark (LBP feature)

Improvement of Switching

Result on LFW benchmark Again clear improvement Likelihood a little bit better than appearance 0.9 **Fusion** = appearance & true positive rate likelihoood fused by linear 0. SVM 0.7 Direct Appearance LBP Direct Appearance LE Appearance Prediction LBP Appearance Pre Ikelihood Prediction LBP elihood Prediction LE Fusion (our best) 0.6 0.2 0.1 0.3 0.4 0.5 false positive rate

Experimental results (LFW benchmark)

Final remarks

- Advantages of Associate-Predict model
 - Using universal identities as bridge between two images
 - Effective use of gallery with flexible switch model
- Achievements
 - Good handling of intra-personal variation (pose, illumination)
 - Best result under restricted protocol on LFW
- Improvement ideas
 - More prior knowledge \rightarrow better results

The End

Thanks for your attention! Questions?

References

- Q. Yin, X. Tang, and J. Sun. An associate-predict model for face recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
- Z. Cao, Q. Yin, J. Sun, and X. Tang. Face recognition with Learningbased Descriptor. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
- N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and Simile Classifiers for Face Verification. *International Conference on Computer Vision (ICCV)*, 2009.

Learning-based descriptor (LE)

"learning-based descriptor" pipeline

