

Age Estimation

Narine Kokhlikyan | January 19, 2012

Human Age Estimation Based On Changes Of Facial Appearance

FACIAL IMAGE PROCESSING AND ANALYSIS, INSTITUTE FOR ANTHROPOMATICS, FACULTY OF INFORMATICS

Karlsruhe Institute of Technology

Overview

- Introduction
- Problems
- Approaches
 - AGES
 - LLD
- Experimental Evaluation
- Conclusion and Disscussion

Introduction	AGES	LLD	Experiments	Conclusion

Human Aging Process ...

... leads to remarkable changes of human facial appearance

Introduction	AGES	LLD	Experiments	Conclusion

Why facial age estimation ?

- Directly inferred from facial appearance
- Real-world applications
 - Age Specific HCI
 - Children Protection
 - Security Control and Surveillance Monitoring
 - Multi-cue identification

Introduction	AGES	LLD	Experiments	Conclusion

How old is this man on the picture in the middle ?

Introduction	AGES	LLD	Experiments	Conclusion

How old is this man on the picture in the middle ?

51

Problems

Age estimation is even difficult for human
 Different people age differently

Limited number of aging images

Related Work

- Anthropometric approach
 - Based on measured sizes and proportions on human faces
 - Considers only the facial geometry but not texture
 - Face image classification in 3 groups (babies, young adults and seniors)
- Aging function
 - Considers both shape and structure
 - Deals with any age
 - Does not consider personal and temporal characteristics of aging

Introduction	AGES	LLD	Experiments	Conclusion

Aging Pattern

Definition 1. An aging pattern is a sequence of <u>personal</u> face images sorted in <u>time</u> order

- All face images come from the same person
- And are arranged by time

AGES

Introduction

Aging Pattern(2)

- Feature Extraction
 - Images are transformed into feature vector

0

- Feature vectors are extracted by **Active Appearance Model**
- Missing parts are marked with 'm'
- Available parts are marked with 'b'

10

AGES

Feature Extraction

The AGES Algorithm

- AGES Learning
- Age Estimation

Introduction	AGES	Experiments	Conclusion

AGES – Learning

AGES – Missing Faces - Initialization

Missing Faces → Initialization

Introduction	AGES	LLD	Experiments	Conclusion

Missing Faces→ Initialization

Institute for Anthropomatics. Faculty of Informatics

Conclusion

Institute for Anthropomatics. Faculty of Informatics

AGES - Learning

New Test Image

Introduction	AGES	LLD	Experiments	Conclusion

Age Estimation(2)

Generating aging patterns

Introduction	AGES	LLD	Experiments	Conclusion

Age Estimation(3)

Introduction	AGES	LLD	Experiments	Conclusion

Age Estimation(4)

AGES - Challenges

- Lack of sufficient training data
 - The images at the higher ages are especially rare
- Many missing values in aging pattern vector

Introduction	AGES	LLD	Experiments	Conclusion
	0000000000000000			

- Relieves the problem of insufficient training samples
- Additional knowledge -> Close ages look quite similar
- Label distribution rather than a single label for each image

Introduction	AGES	LLD	Experiments	Conclusion

Different cases of label distribution

 $P(y) \rightarrow$ The <u>proportion of</u> y in a full class description of the instance

$$y \rightarrow age; \sum_{y} P(y) = 1$$

Introduction	AGES	LLD	Experiments	Conclusion

Label Distribution

Typical cases of label distribution

Input: A Trainig set $S = \{(x_1, P_1(y)), \dots, (x_N, P_N(y),)\}$

Instance Label distribution

- **Goal:** Learn $p(y | x; \theta)$ as similar as possible to p(y)
- The features of image x are extracted by AAM


```
\theta^* = \underset{\theta}{\arg\min} D_{KL}(P_i(y) \parallel p(y \mid x_i; \theta))
```


LLD – Age Estimation

- Given a new face image x'
- Calculate p(y | x')
- If expected class label for x' is single $y* = \arg \max_{y} p(y | x')$
- Otherwise if multiple labels are allowed
 - A threshold is used to select multiple labels

Aging Face Databases

FG-NET

- Face images: 1,002
- Subjects: 82
- Age range: 0 to 69
- Variations: pose, illumination, expression, etc.

MORPH

- Face images: 1,724
- Subjects: 515
- Age range: 15 to 68
- Variations: pose, illumination, occlusion, etc.

Age Range Distribution

Age Range	FG-NET (%)	MORPH (%)
0-9	37.03	0
10-19	33.83	24.71
20-29	14.37	47.34
30-39	7.88	18.94
40-49	4.59	6.47
50-59	1.50	1.85
60-69	0.80	0.69

Introduction	AGES	LLD	Experiments	Conclusion

Compared Methods

Human A

Human B

51 Images from FG-NET

Introduction	AGES	LLD	Experiments	Conclusion

Evaluation Measurements

Mean Absolute Error(MAE)

$$MAE = \sum_{k=1}^{M} |\overline{age}_{k} - age_{k}| / M$$

Indicates the avarage performance of the age estimator

Cumulative Score

 $CumScore(l) = M_{e \le l} / M \times 100\%$

Indicates the accurancy of the age estimator

Results - MAE

Results – MAE – Different Age Ranges

Danaa	#Complea	IIS-LLD			ACES
Kange	#Samples	Gaussian	Triangle	Single	AGES
0-9	371	2.83	2.83	3.06	2.30
10-19	339	5.21	5.17	4.99	3.83
20-29	144	6.60	6.39	6.72	8.01
30-39	79	11.62	11.66	12.10	17.91
40-49	46	12.57	15.78	18.89	25.26
50-59	15	21.73	22.27	27.40	36.40
60-69	8	24.00	26.25	32.13	45.63

Results – Cumulative Score

Introduction	AGES	LLD	Experiments	Conclusion

Conclusion and Discussion

- AGES \rightarrow an effective algorithm for learning and age estimation
- LLD relieves the problem of insufficient training data
- AGES and IIS-LLD show better results than the compared approaches
- Sufficient data \rightarrow AGES performs better than LLD otherwise LLD is better

Future Work

- Special feature extractor for age estimation
- Voice, hair, gait can be considered

	AGES	Experiments	Conclusion
39 18.01	.2012 Narine Kokhlikyan – Age Estimation	Institute for Anthropom	atics. Faculty of Informatics

Referneces

- Geng, X.; Zhou, Z.-H.; Zhang, Y.; Li, G.; and Dai, H. Learning from facial aging patterns for automatic age es- timation. In Proc. the 14th ACM Int'l Conf. Multimedia, 2006.
- Xin Geng, Zhi-Hua Zhou, and Kate Smith-Miles. Automatic age estimation based on facial aging patterns. *IEEE TPAMI, 2007.*
- T. Cootes, G. Edwards, and C. Taylor, Active Appearance Models, IEEE Trans. Pattern Analysis and Machine Intelligence, June 2001.
- Xin Geng, Kate Smith-Miles, Zhi-Hua Zhou. Facial Age Estimation by Learning from Label Distributions. AAAI'10, Atlanta, GA, 2010.
- Yun Fu, Guodong Guo and Thomas S. Huang, Fellow, Age Synthesis and Estimation via Faces: A Survey. IEEE November 2010

AGES – Learning Algorithm Aging Pattern **Projection Reconstruction** <u>PCA</u> Minimizing Reconstruction $y = W^T (x - \mu)$ Error W^T - Transponse matrix Aging Pattern Subspace $\boldsymbol{\chi}$ - Aging pattern vector - Mean vector of Xμ W, μ

Initialisation

 $i \leftarrow 0; \quad x_k^m \leftarrow [\mu_k^m]; \; \mu_k^m \;$ - mean vector Apply PCA to get W_0 and $\; \mu_0$

■ Initialization $i \leftarrow 0; \quad x_k^m \leftarrow [\mu_k^m]; \quad \mu_k^m \quad \text{-mean vector}$ Apply PCA to get W_0 and $\quad \mu_0$

Projection

• Estimate
$$\rightarrow y_k$$

 $[W_i(^a_k)]y_k = x_k^a - [\mu_i(^a_k)]$

Reconstruction

Reconstruct
$$\rightarrow x_k$$

 $\hat{x} = \mu + Wy_k$
 $x_k^m \leftarrow \hat{x}_k^m$

■ Initialization $i \leftarrow 0; \quad x_k^m \leftarrow [\mu_k^m]; \quad \mu_k^m \quad \text{-mean vector}$ Apply PCA to get W_0 and $\quad \mu_0$

Projection

• Estimate
$$\rightarrow y_k$$

 $[W_i(^a_k)]y_k = x_k^a - [\mu_i(^a_k)]$

Reconstruction

Reconstruct
$$\rightarrow x_k$$

 $\hat{x} = \mu + Wy_k$
 $x_k^m \leftarrow \hat{x}_k^m$

Apply PCA to get
$$W_{i+1}$$
 and μ_{i+1}
 $i \leftarrow i+1$

Initialization

 $i \leftarrow 0; \quad x_k^m \leftarrow [\mu_k^m]; \; \mu_k^m \;$ - mean vector Apply PCA to get W_0 and $\; \mu_0$

Projection

Estimate
$$\rightarrow y_k$$

 $[W_i(^a_k)]y_k = x^a_k - [\mu_i(^a_k)]$

Reconstruction

Reconstruct
$$\rightarrow x_k$$

 $\hat{x} = \mu + Wy_k$
 $x_k^m \leftarrow \hat{x}_k^m$

PCA

Apply PCA to get
$$W_{i+1}$$
 and μ_{i+1}
 $i \leftarrow i+1$

Repeat until reconstruction error < θ

Reconstruction Error

$$\overline{\varepsilon}^a = \frac{1}{N} \sum_{k=1}^N (x_k^a - \hat{x}_k^a)^T (x_k^a - \hat{x}_k^a)$$

- Our Goal is to find
 - W and μ that minimize reconstruction error

$$\theta^* = \underset{\theta}{\arg\min} \sum_{i} \sum_{y} (P_i(y) \log \frac{P_i(y)}{p(y \mid x_i; \theta)}) = \underset{\theta}{\arg\max} \sum_{i} \sum_{y} P_i(y) \log p(y \mid x_i; \theta)$$
(1)

$$\theta^* = \underset{\theta}{\arg\min} \sum_{i} \sum_{y} (P_i(y) \log \frac{P_i(y)}{p(y \mid x_i; \theta)}) = \arg\max_{\theta} \sum_{i} \sum_{y} P_i(y) \log p(y \mid x_i; \theta)$$
(1)

- **Case 1** \rightarrow Single label
 - $P_i(y) = \delta(y, y_i), \delta(.,.)$ Kronecker function

Consequently (1) can be simplified to the maximum lakelihood criterion
 Case 2
 Multi-label (equal probabilities)

Consequently (1) can be simplified to

$$\theta^* = \arg \max_{\theta} \sum_{i} \frac{1}{p_i} \sum_{y} \log p(y | x_i; \theta)$$

• Case 3 \rightarrow Multiple labels (different probabilities) $f_k(x, y)$ - feature function, $\tilde{p}(x, y)$ - empirical joint distribution

Expected value of $f_k(x, y)$ w.r.t. $\widetilde{p}(x, y)$

$$\widetilde{f}_k = \sum_{x,y} \widetilde{p}(x, y) f_k(x, y)$$

Expected value of $f_k(x, y)$ w.r.t. $\tilde{p}(x)$ and $p(x | y; \theta)$ $\hat{f}_k = \sum_{x,y} \tilde{p}(x) p(y | x; \theta) f_k(x, y)$

Maximum Entropy model

$$H = -\sum_{x,y} \widetilde{p}(x) p(x \mid y; \theta) \log p(y \mid x; \theta)$$

Subject to constrain $\hat{f}_k = \tilde{f}_k$

• Maximum entropy model has the exponential form $p(y | x; \theta) = \frac{1}{Z} \exp(\sum_{k} \theta_{k} f_{k}(x, y))$

Different Age Ranges - MAE

Method	0-5	6-30	31-69
AGES	1.87	4.88	24.97
$AGES_r$	1.17	4.48	7.93

FG-NET - LOPO