

Recognizing Micro-Expressions & Spontaneous Expressions

Presentation by Matthias Sperber

Institute for Anthropomatics, Computer Vision for Human-Computer Interaction Lab, FIPA Group

Motivation

- Recognize micro-expressions
- Distinguish spontaneous vs. posed expressions
- Useful for..
 - Police & surveillance
 - Doctors
 - Psychology researchers
 - Teachers, business negotiators, …?
 - \rightarrow In short: lie detection using facial expressions

Introduction: Facial expressions

- Facial expressions caused by certain emotions
- 6 basic types of facial expressions (according to Ekman):
 - Disgust
 - Anger
 - Fear
 - Happiness
 - Sadness
 - Surprise

Video: http://www.youtube.com/watch?v=A_XyYxpWIS0

Introduction: Micro-Expressions

- What are micro-expressions?
 - Very short expressions (1/3 ~ 1/25 seconds)
 - Involuntary (concealed or repressed expressions)
 - Humans are very bad at seeing them
 - Can be learned easily (to some extent)
 - Trained humans: 47% accuracy (untrained: ~25%)
 - Discovery:
 - Hospital patient with secret suicide intentions fools her doctor
 - Video recordings reveals micro-expressions of concealed anguish, quickly covered up by a smile
 - Could be avoided with automatic method to detect micro-expressions!

Introduction: Micro-expressions

Video: http://www.youtube.com/watch?v=4S4xmlkfq6c

1/27/12 Matthias Sperber – Spontaneous Expressions & Micro-Expressions

5

Institute for Anthropomatics, Computer Vision for Human-Computer Interaction Lab, FIPA Group

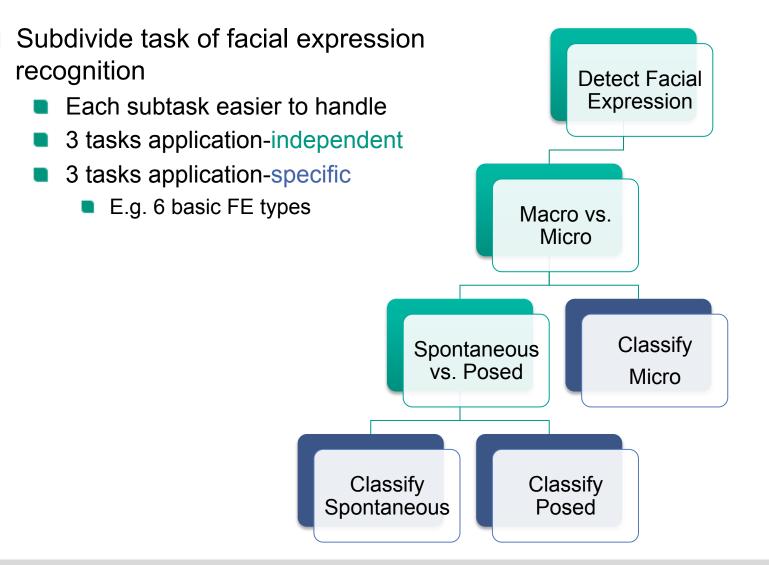
Introduction: Posed vs. Spontaneous Expressions

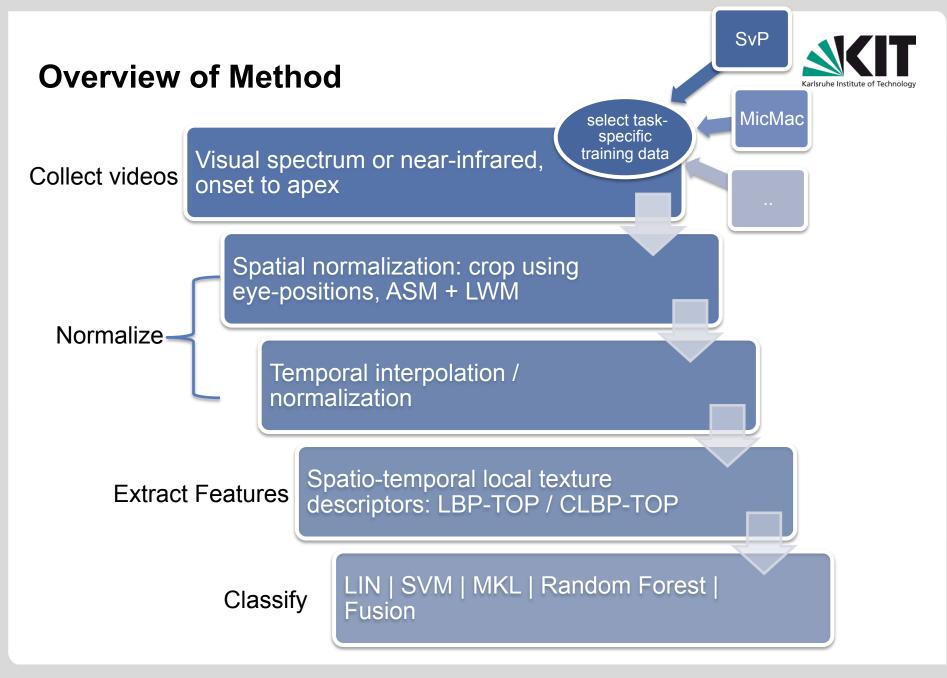
- Recently: research shifting from **posed** expressions to **spontaneous** expressions
- Both differ quite strongly
 - E.g.: Posed smiles: only movement around mouth, real smiles also around eyes

Introduction

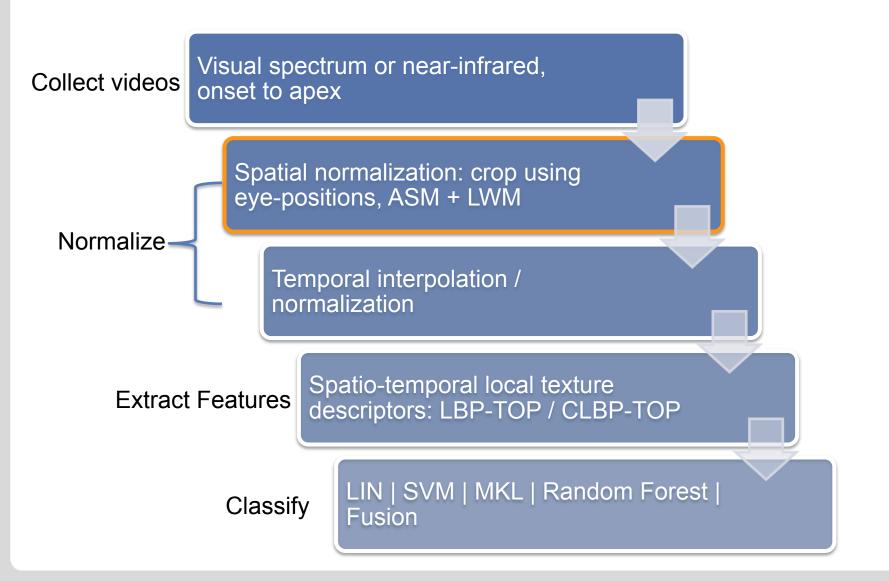
- Goal of this research:
 - Detect and classify micro-expressions
 - Distinguish posed from spontaneous expressions
 - Possibly outperform humans
- Challenges
 - Short duration of micro-expressions (limited # of frames)
 - How to collect realistic data of micro- and spontaneous expressions?
- Approach
 - Complete method including normalization, feature extraction, and classification
 - Use same method for different tasks, train on problem-specific data
 - Use a cascade-structured algorithm to subdivide tasks

A Generic FE Recognition Framework



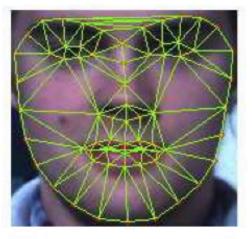


Overview of Method



Active Shape Models (ASM)

- Statistical model for shape of object
 - Shape model (specifies allowable constellations of landmarks)
 - Profile model (templates for each landmark)
- Iteratively:
 - Use template matcher to move around landmarks
 - Adjust shape by calculating similarity transform



(a)

Local Weighted Means (LWM)

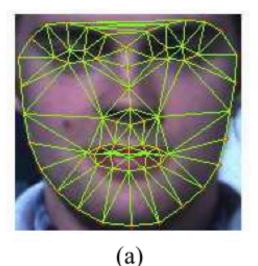
Using ASM landmarks: compute transformation from first neutral frame to model face:

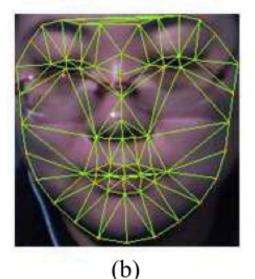
 $f:(x,y)\mapsto(x',y')$

- Apply same transformation to all frames
- Effect: spatial normalization

12

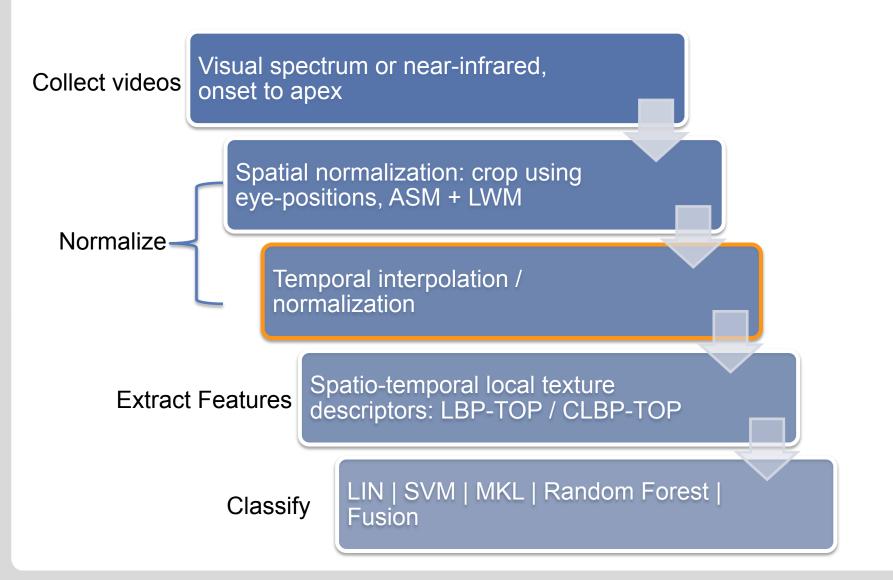
- Certain facial features always lie in same area on image
- Muscle movement not affected





(c)

Overview of Method



Temporal Interpolation Method (TIM)

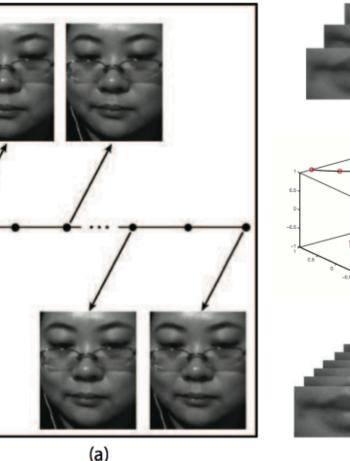
- Problem 1: micro-expressions are very short
 - E.g. 25fps: 1/25 sec ...1/3 sec ~ 1...8 frames
 - At least 7 frames needed for LBP-TOP feature extraction
- Problem 2: Low # frames \rightarrow histograms statistically unstable
- Solution: Interpolate between frames, then sample as wished
 - May lead to both a larger or smaller number of frames
 - Generic method to interpolate any kind of feature vectors

Temporal Interpolation Method (TIM)

Basic idea:

- Interpolate: Map feature vectors to continuous curve
- Invert function
- Create feature vectors from arbitrary position on curve $(\rightarrow \text{sampling})$

Values for # frames: 10, 20, 25 and 30 frames / video

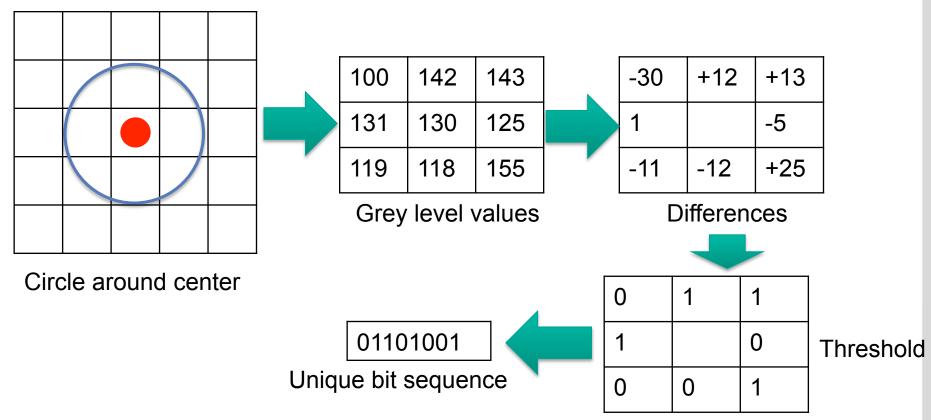


Overview of Method

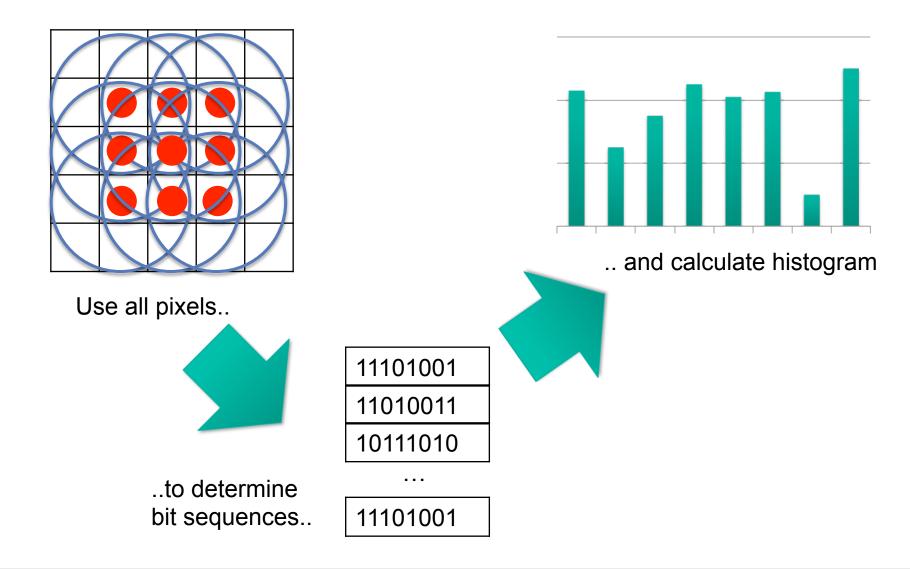


Local Binary Pattern (LBP)

- Texture descriptor (2D)
- robust against changes in grey level (illumination), rotation, translation
- Describe "self-similarity" of a texture

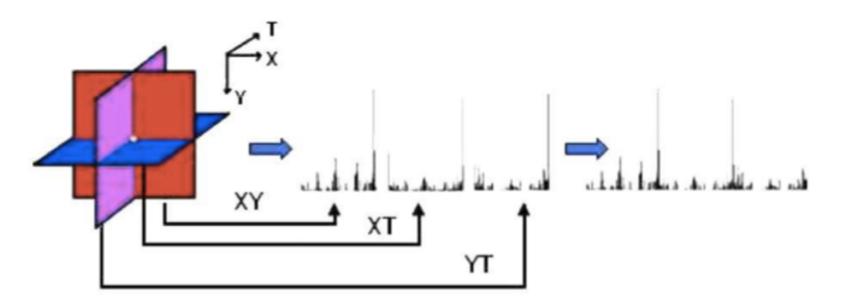


Local Binary Pattern (LBP)



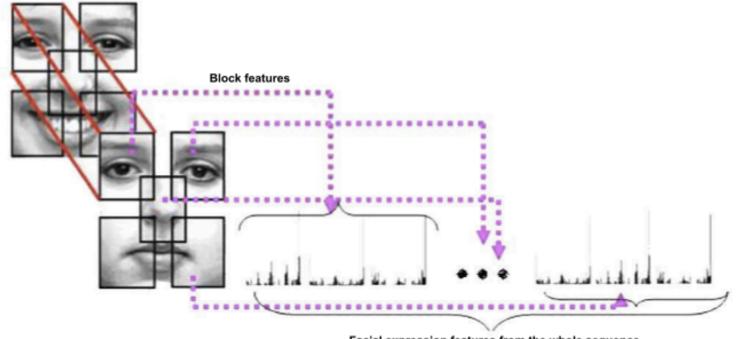
LBP on 3 Orthogonal Planes (LBP-TOP)

- Extend into temporal domain (i.e., make texture descriptor **dynamic**)
- View video as 3D space
- For each pixel, use circle on 3 planes (XY, XT, YT) in the same fashion
- Concatenate histograms



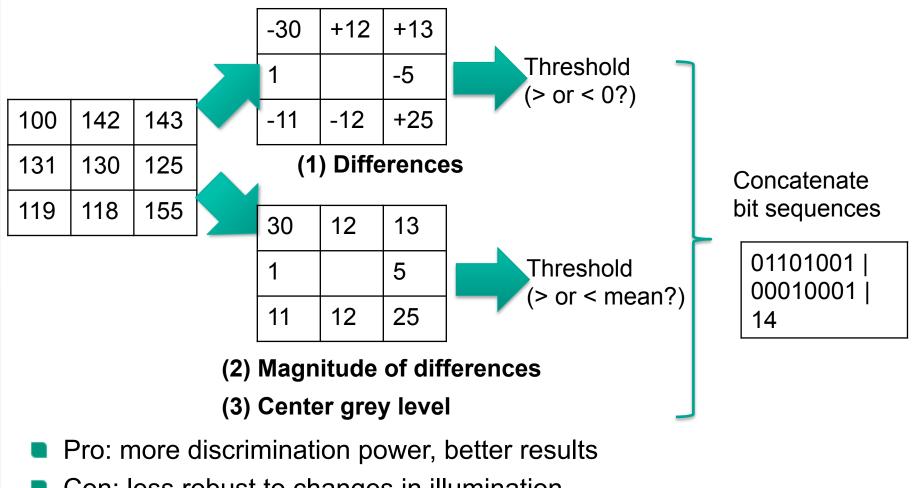
LBP on 3 Orthogonal Planes (LBP-TOP)

- To keep local and temporal context:
 - Divide into blocks (e.g. 8×8×1, 5×5×1, 8×8×2, 5×5×2, 8x8x3 etc.)
 - Use each block (=dynamic texture) to calculate LBP-TOP histograms
 - Concatenate histograms



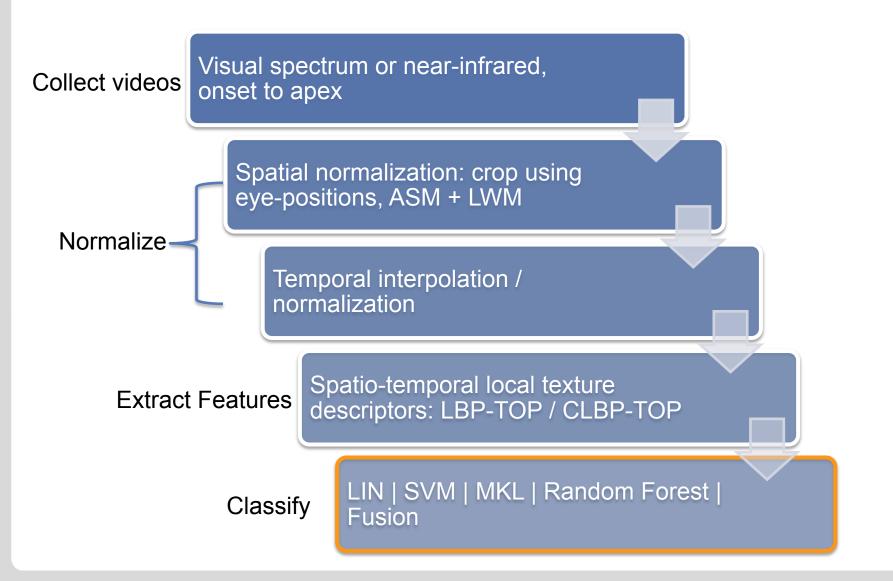
Facial expression features from the whole sequence

Completed Local Binary Patterns (CLBP-TOP)



Con: less robust to changes in illumination (→works better on near-infrared)

Overview of Method



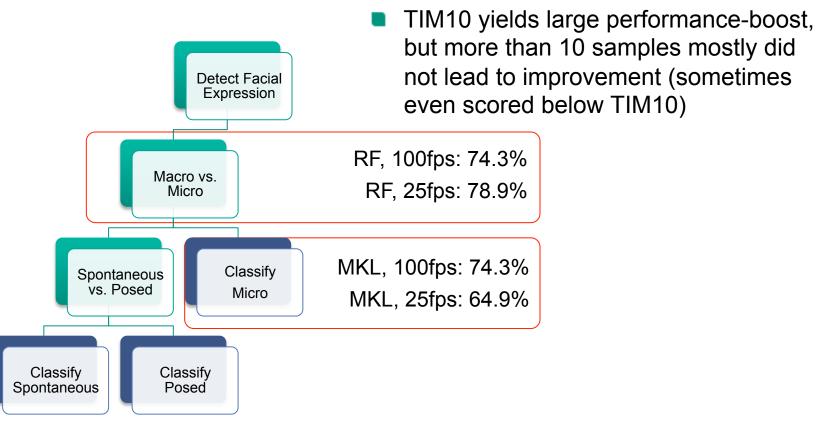
Classification

- Linear Support Vector Machine (SVM)
- SVM with polynomial kernel
- Multi-Kernel Learning (MKL)
 - Combine different kernels
- Random Forests (RF)
 - Combine randomized decision trees
- Fusion
 - Majority voting between linear, SVM, RF

- Experiment Micro-Expressions:
 - Subjects watch videos that are supposed to induce 1 of basic 6 emotions
 - Carefully watch clips, but suppress facial expressions
 - Experimenters try to tell emotion from watching face
 - Threat of punishment if successful in telling
 - After experiment: subjects report true emotions

Results:

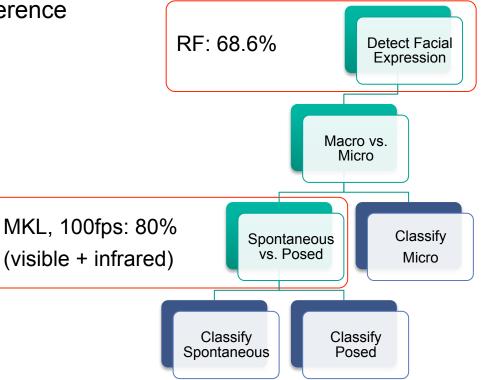
- Some results better than human recognition
- Random Forest & MKL had best results (depending on task)



- Experiment Spontaneous vs Posed:
 - Subjects watched movie clips inducing the 6 basic emotions
 - This time: no suppression
 - Labeled according to subjects' reported emotions
 - Afterwards, subjects were asked to pose each emotion twice
 - Videos recorded with both visual-spectrum- and near-infrared-camera

Results:

- Near-infrared > visual-spectrum
- CLBP-TOP > LBP-TOP for near-infrared data (up to 20% better); visual-spectrum data: difference much smaller



Summary

- Main contributions
 - Extend FE research to new tasks
 - Realistic but small corpora
 - FE recognition cascade
 - Method that can solve all subtasks in cascade

Discussion & Future Work

Discussion

- First experiments that use somewhat realistic data!
- Used mostly existing methods, extended to new contexts
- Dataset too small \rightarrow results not very significant
- Future work
 - Make corpora larger & more realistic
 - Ekman: For lie detection, no single one good cue (micro-expressions etc.) exists
 - → Several cues must be combined:
 - Classify micro-expressions (short but full involuntary expressions)
 - Classify "subtle expressions" (longer but only expression-fragments)
 - Body language (habits when nervous, ...)
 - Voice characteristics (pitch, speed, ..)

Thank you for your attention

Questions?!

Appendix: Local Weighted Means (LWM)

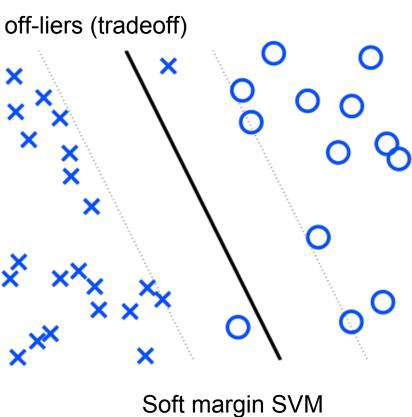
Using ASM landmarks: compute transformation from first neutral frame to model face:

$$f:(x,y)\mapsto(x',y')$$

- Apply same transformation to all frames
 - This will normalize the expression spatially: certain facial features will always lie on the same spot
- Mathematically:
 - Let polynomials p_i pass over each control point & its (*n*-1) nearest neighbors
 - Compute weights w_i for each polynomial, according to distance of its control point to (x, y). Set $w_i = 0$ for non-local control points
 - For given point (*x*, *y*): Compute local weighted mean $\sum w_i p_i(x, y)$

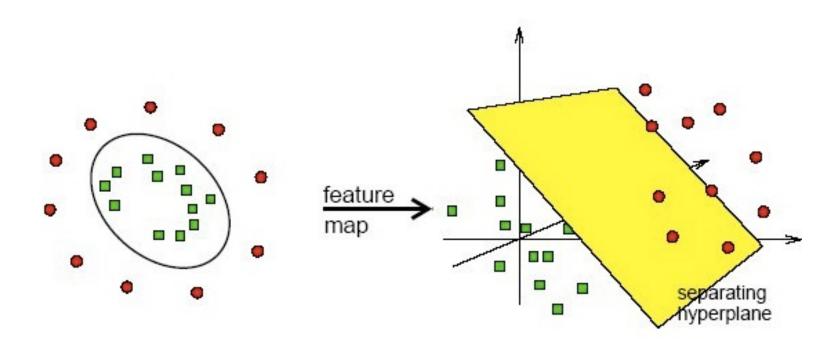
Linear Classifier

- Basic support vector machine (SVM)
- Try to separate feature space linearly
 - Maximizing margin and..
 - ..minimizing penalty for off-liers (tradeoff)
- During training: normal vector w and bias b are learned



SVM with Kernel Trick

- Perform non-linear transformation into different feature space
- Certain types of non-linear separation are then possible using a standard SVM classifier
- Problem: how to know which Kernel to use?

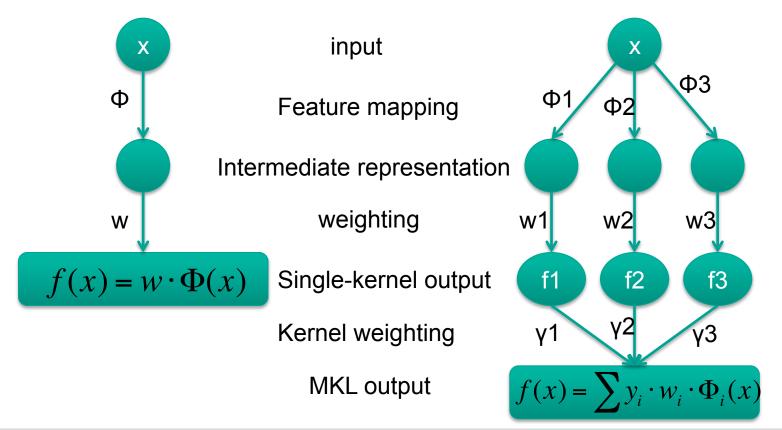


Karlsruhe Institute of Technology

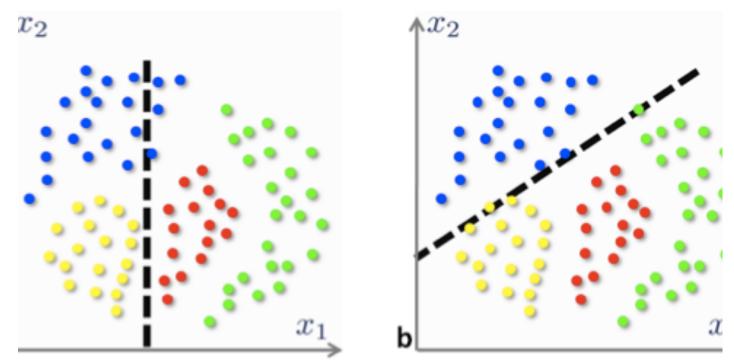
MKL

34

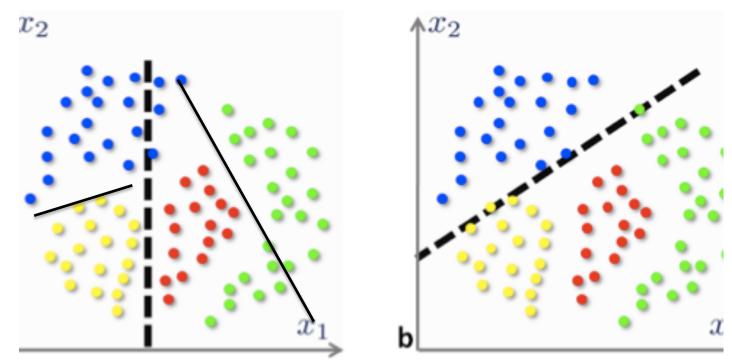
- Combine kernels (here: polynomial deg 2 & 6, histogram-intersection)
- Train SVM for each kernel
- Learn weights for different kernels and combine them



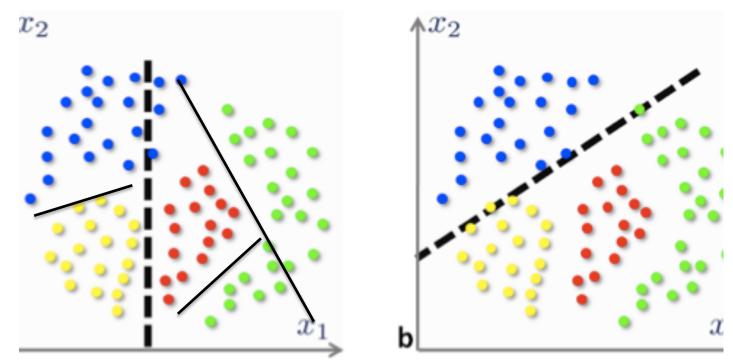
- Construct decision trees
 - Iteratively divide feature space in a way that separates the classes the best



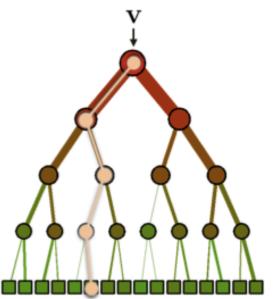
- Construct decision trees
 - Iteratively divide feature space in a way that separates the classes the best

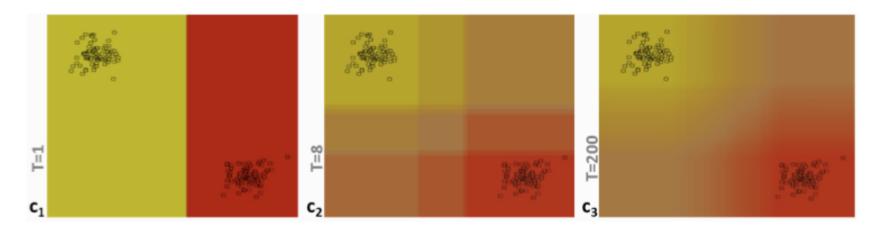


- Construct decision trees
 - Iteratively divide feature space in a way that separates the classes the best



- Introduce random component to construction of trees
 - Subsets of samples
 - Randomly disturb separating lines
- Combine trees to make output smoother





Appendix: Tables (Classify Micro)

Phase	Classes	Method	Accuracy
			(%)
1	detection	RF+TIM15	67.7
1	detection	SVM	70.3
1	detection	RF+TIM20	70.3
1	detection	MKL	71.4
1	detection	RF+TIM10	74.3
2	neg/pos	SVM	54.2
2	neg/pos	SVM+TIM15	59.8
2	neg/pos	MKL	60.2
2	neg/pos	MKL+TIM10	71.4

Table 2. Leave-one-subject-out results on the SMIC corpus. MKL denotes Multiple Kernel Learning; TIMn denotes temporal interpolation to n frames; RF denotes the Random Forest decision tree classifier; neg/pos denotes classifying negative vs. positive micro-expressions.

Appendix: Tables

Phase	Classes	Method	Accuracy
			(%)
1	detection	RF+TIM10	58.5
1	detection	SVM+TIM10	65.0
1	detection	MKL+TIM10	70.3
1	detection	RF+TIM15	76.3
1	detection	RF+TIM20	78.9
2	neg/pos	SVM+TIM10	51.4
2	neg/pos	MKL+TIM10	60.0
2	neg/pos	MKL+TIM10	60.0
2	neg/pos	SVM+TIM15	62.8
2	neg/pos	MKL+TIM15	64.9

Table 3. Leave-one-subject-out results on the SMIC corpus downsampled to 25fps. MKL denotes Multiple Kernel Learning; TIMndenotes temporal interpolation to n frames; RF denotes the Random Forest decision tree classifier; neg/pos denotes classifying negative vs. positive micro-expressions.

40

Appendix: Tables (SVP)

Channel	Method	Accuracy	Accuracy
		LBP (%)	CLBP (%)
NIR	SVM	49.3	66.6
NIR	FUS+TIM10	55.7	73.0
NIR	LIN+TIM25	58.0	78.2
NIR	LIN+TIM30	62.8	76.9
VIS	SVM	65.3	70.3
VIS	FUS+TIM20	66.0	72.0
VIS	SVM+TIM25	66.6	70.0
VIS	SVM+TIM30	66.6	70.0
NIR+VIS	MKL+TIM25	66.8	80.0

Table 1. Leave-one-subject-out results on the SPOS corpus with CLBP-TOP and LBP-TOP. NIR denotes the near-infrared channel; VIS denotes the visual channel; SVM denotes support vector machines; MKL denotes Multiple Kernel Learning; TIMn denotes temporal interpolation to n frames; LIN denotes the LINEAR classifier; FUS denotes fusion of SVM, LINEAR and Random Forest through majority voting.

Appendix: Tables (CLBP-TOP)

Components	Method	Accuracy
		(%)
S+M+C	FUS+TIM10	73.0
S+M	FUS+TIM10	72.7
M+C	FUS+TIM10	71.7
S+C	FUS+TIM10	56.4
S	FUS+TIM10	55.7
S+M+C	LIN+TIM25	78.2
S+M	LIN+TIM25	76.2
M+C	LIN+TIM25	73.0
S+C	LIN+TIM25	62.1
S	LIN+TIM25	58.0

Table 2. Leave-one-subject-out results on the SPOS corpus comparing different CLBP-TOP components. NIR data were used for this experiment. C is the centre grey level; S is the sign and M is the magnitude of the local difference d_p . TIMn denotes temporal interpolation to n frames; LIN denotes the LINEAR classifier; FUS denotes fusion of SVM, LINEAR and Random Forest through majority voting.

Appendix: Tables (FED)

Method	Accuracy	
	(%)	
CLBP+SVM	58.8	
CLBP+MKL	64.7	
CLBP+RF	68.6	

Table 3. Leave-one-subject-out results for LAYER1-FED with visual data. SVM denotes support vector machines; MKL denotes multiple kernel learning; RF denotes the Random Forest decision tree classifier.

References

Main papers:

- [1] Pfister et al.: Recognising spontaneous facial micro-expressions. (2011)
- [2] Pfister et al..: Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework. (2011)
- Referenced literature:
 - [3] Ekman, P.: Lie Catching and Microexpressions. (2009)
 - [4] Ekman et al.: Detecting deception from the body or face. (1974)
 - [5] Polikovsky et al.: Facial micro-expressions recognition using high speed camera and 3d-gradient descriptor. (2009)
 - [6] Shreve, M. et al.: Macro- and micro-expression spotting in long videos using spatio-temporal strain. (2011)
 - [7] Valstar et al.: How to distinguish posed from spontaneous smiles using geometric features.(2007)

- Referenced literature (continued):
 - [8] Bartlett et al.: Verbal and nonverbal features of human-human and human-machine interaction. (2008)
 - [9] Warren et al.: Detecting deception from emotional and unemotional cues.
 - [10] Mihalcea et al.: The lie detector: explorations in the automatic recognition of deceptive language. (2009)
 - [11] Michael et al.: Motion profiles for deception detection using visual cues. (2010)
 - [12] Cootes et al.: Active shape models their training and application. (1995)
 - [13] Milborrow et al.: Locating facial features with an extended active shape model. (2008)
 - [14] Papageorgiou et al.: A general framework for object detection. (1998)

- Referenced literature (continued):
 - [15] Yan et al.: Graph embedding and extension: A general framework for dimensionality reduction (2007)
 - [16] Zhou et al.: Towards a practical lipreading system. (2011)
 - [17] Ojala et al.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. (2002)
 - [18] Guo et al.: A completed modeling of local binary pattern operator for texture classification. (2010)
 - [19] Valstar et al.: Spontaneous vs. posed facial behavior: Automatic analysisof brow actions. (2006)