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Abstract

Information about the environment is desired in several applications, for example au-
tonomous robots and support systems for visually impaired persons. Like with most
scenarios where a human being uses a support system, reliability is of utmost importance.
This creates a high demand for performance and robustness in real-world settings. Many
systems created towards this purpose cannot cope with constraints such as platforms with
a large amount of uncontrolled ego-motion and the need for real-time processing of infor-
mation and are thus not feasible for this specific situation.

The topic of this thesis is a novel framework to create vision based support systems for
visually impaired persons. It consists of a modular, easily extendable and highly agile
software system. Furthermore, a ground detection system is created to aid in mobile
navigation scenarios. The system calculates the accessible section by relying on the as-
sumption that the orientation of a given plane segment can be calculated using a stereo
camera reconstruction process.

Many frameworks have been created to simplify the developing process of large and com-
plex systems and to foster collaboration among researchers. Usually, such frameworks
would be created towards a certain purpose, for example a robotic application. In such a
scenario, many elements are needed to manage the components of the robotic platform,
such as motor controls. This creates dependencies on the availability of specific building
blocks and induce great overhead if such components are not needed. Thus, the created
framework imposes no restrictions on its use case by moving such functionality into mod-
ular components.

In computer vision many features and algorithms to detect ground plane exist. Some of
these are quite costly to calculate, for example segmentation based algorithms. Others use
a random sample consensus (RANSAC) based approach that shows problems in situations
where the existing ground plane only accounts for a small part of the examined input
data. To alleviate these problems a simple, yet robust, feature is proposed which consists
of a gradient detection in the stereo reconstruction data. The gradient of a region in the
disparity map correlates directly with the orientation of a surface in the real world. Since
the gradient calculation is not complex, a fast and reliable computation of the accessible
section becomes possible.

To evaluate the proposed ground detection system, a dataset was created. This dataset
consists of 20 videos recorded with a hand held camera rig and contains a high degree
of camera ego-motion to simulate a system worn by a pedestrian. The accessible section
detection based on the gradient calculation shows promising results.
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Kurzbeschreibung

Informationen über die nähere Umgebung sind in den verschiedensten Anwendungsfällen
sehr begehrt, zum Beispiel für autonome Roboter und unterstützende Systeme für Blinde
und sehbehinderte Menschen. Wie in den meisten Szenarien, in denen sich der Mensch
auf ein unterstützendes System verlässt, ist Zuverlässigkeit ein entscheidender Faktor.
Diese Tatsache stellt hohe Anforderungen an Performanz und Robustheit unter realen
Bedingungen. Viele Systeme die zu diesem Zweck erstellt wurden weisen Probleme auf,
welche durch die Verwendung von mobilen Plattformen mit einer starken Eigenbewegung
sowie der Erfordernis an echtzeitfähiger Verarbeitung entstehen. Sie sind daher in solch
spezifischen Situationen nicht verwendbar.

Der Schwerpunkt dieser Arbeit liegt auf einem neuartigen Software Framework für die bild-
basierte Unterstützung von Blinden oder sehbehinderten Menschen. Es besteht aus einem
modularen, einfach zu erweiternden und höchst agilem Software System. Weiterhin wird
eine Methode zur Erkennung der begehbaren Fläche zur Hilfe bei der mobilen Orientierung
einer Person erstellt. Dieses System ermittelt die begehbare Fläche basierend auf der
Annahme, dass die Ausrichtung eines Flächenabschnittes aus den gewonnen Daten einer
Stereo Rekonstruktion berechnet werden kann.

Viele Software Frameworks wurden bereits erstellt um den Entwicklungsprozess von großen
und komplexen System zu vereinfachen und um die Zusammenarbeit zwischen Forschern
voranzutreiben. Normalerweise werden solche Software Frameworks zu einem bestimmten
Zweck erstellt, zum Beispiel der Steuerung eines Roboters. In solch einer Umgebung
werden viele Elemente gebraucht und die verschiedensten Komponenten einer solchen
Robotik-Plattform anzusprechen, z.B. Motor Steuerungen. Dies kann eine Abhängigkeit
zu spezifischen Bestandteilen erzeugen und damit einen Mehraufwand hervorrufen, sollten
solche Komponenten nicht gebraucht werden. Daher wurde das Framework so erstellt, dass
es keinerlei Einschränkungen an sein Benutzungsszenario stellt, indem jegliche derartige
Funktionalität ausgelagert wird.

In der Bild-Verarbeitung existieren bereits viele Algorithmen zur Bestimmung der Bo-
denfläche. Manche dieser Algorithmen sind sehr aufwendig zu berechnen, zum Beispiel
Segmentierungen. Andere benutzen einen random sample consensus (RANSAC) basierten
Ansatz, welcher Probleme aufzeigt, wenn die zu erkennende Bodenfläche nur einen kleinen
Teil der zu untersuchenden Daten ausmacht. Um solche Probleme zu vermeiden, wird ein
einfaches, jedoch robustes, Merkmal vorgestellt, welches auf der Berechnung eines Gradien-
tens in einer Stereo Rekonstruktion basiert. Dabei lässt sich feststellen, dass der Gradient
einer untersuchten Region der Stereo Rekonstruktion mit der Ausrichtung einer Fläche in
der realen Welt korreliert. Da die Gradienten Berechnung nicht komplex ist, wird eine
schnelle und zuverlässige Berechnung der begehbaren Sektion ermöglicht.

Um das erstellte System zu evaluieren, wurde ein Datensatz erstellt. Dieser Datensatz
besteht aus 20 Videos, welche mit einer handgeführten Kameraanlage aufgenommen wur-
den. Die Videos enthalten einen hohen Grad an Eigenbewegung der Kameras um ein trag-
bares System zu simulieren. Die Bodenerkennung basierend auf der Gradienten Berech-
nung zeigt hierbei verheißungsvolle Ergebnisse.
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1. Introduction

”Walking with a friend in the dark is better than walking alone in the light.”
Helen Keller

Navigation in an unknown or known terrain has been an intensively researched topic for a
long time. It exists in several scientific domains, either directly related to computer vision
or using computer vision as a means to gather such information, often in combination with
other methods and sensors. A robot could search for a path in an unknown terrain. An
automobile could not only scan for the existence of road, respectively lanes in front of the
car, but additionally try to warn the driver against pedestrians or other traffic participants
that are getting in the way or too close to the vehicle. An unmanned aerial vehicle (UAV)
could try to avoid collisions while being controlled remotely or flying autonomously. A
visually impaired person could simply search for a way to walk without colliding with
moving or static obstacles.

There already exists an entire array of techniques and specialized hardware to gather
information in an unknown surrounding, such as for example radar, sonar or light detection
and ranging (LIDAR). Most of these require elaborate, complex, obtrusive, bulky or
expensive hardware. Meanwhile, digital cameras and raw computing power have seen a
constant decrease in cost and size. This manifests itself in mobile smartphones which
have become commonplace in our modern world. Computer vision can replace their more
expensive counterparts and provide an inexpensive and mobile alternative for navigational
aid systems.

1



1. Introduction

Figure 1.1.: A visually impaired person testing drivers’ behavior when presented with a
blind person crossing the street in Switzerland. By law, drivers are required
to stop and let them pass. (Source: [Sü10])

For visually impaired people this advance in technology can have a great impact upon
everyday situations. For example, figure 1.1 shows a visually impaired person facing the
difficulty of crossing a street in Switzerland. A digital assistant could not only help in
such a navigational context, but also support its user in various other activities. It could,
for example, help regain lost or misplaced items or read text off (street) signs to help with
orientation inside buildings or in pedestrian areas. Furthermore, books could be made
accessible without having to create a special braille version. Pricing information could
be read while shopping. Moreover, broader information about the user’s surrounding in
specific situations, such as the number of people in a room or whether a person is currently
looking at the user, might also be desired.

Such support systems can help visually impaired persons to reduce their dependence upon
human assistance. This is important for self-determination and a recovery of autonomy
in everyday situations. While some of these things might also be interesting for everyone,
the helpfulness of such mobile systems, especially for visually impaired people, can hardly
be emphasized enough.

1.1. Motivation

Numerous systems to recognize either ground plane, certain classes of obstacles, walkway
or road surface have already been proposed. Most of these do not allow for an intense

2



1.1. Motivation

Figure 1.2.: Subaru’s EyeSight system can recognize pedestrians, cyclists and other cars
to help drivers avoid collisions. It also triggers several active, passive and
preventive systems when hazards are detected. (Source: [Ste11])

camera movement and have so far been used in rather static settings such as upon slowly
moving robots. This is due to the fact that they impose constraints upon the observed
application-dependent environment, for example viewing a typical street scene from a
moving car, as can be seen in figure 1.2.

These constraints are a problem when applied to a more versatile platform, as such systems
should be worn on the body by a visually impaired person, which induces ego-motion. To
become insusceptible to such ego-motion, the entire system needs to be built without rely-
ing on specific external conditions, such as the exact distance of the camera to the ground,
the angle of the camera towards the horizon or the direction of the camera movement as
well as its possible rotations. Thus, most of the existing systems cannot be used in such a
setting.

On the software side, most systems are built for a specific subset of the possible settings.
These situations often enforce specific requirements, for example integration into exist-
ing frameworks and commercial robotic or automotive platforms. Such platforms always
contain domain specific components and restrictions that are hard to remove in case they
are not required. The reuse of individual components is made harder by dependencies
between those components as well as reliance on specific framework attributes. In order
to increase reusability, a framework should thus be as abstract as possible while still being
built towards a particular target.

3



1. Introduction

1.2. Contributions

Even though there already exist quite a few software frameworks, the focus of this thesis
compartmentalizes itself between a software framework and a base method for a ground
detection system for visually impaired people.

A framework’s role should be to foster collaboration between researchers by providing a
common platform as well as tools to simplify the development process. Furthermore, it can
help to reduce development overhead by splitting the effort between researchers. This is
done by creating a modular software framework, which can easily be extended with software
modules. Each of these modules can represent a small part, even a single functionality. It
is also possible to create a module that contains an entire collection of related functionality.
Due to the separation of ideas and principles into encapsulated modules it becomes easy
and straightforward to reuse them. This has been inspired by modern object oriented
design paradigms as well as already existing systems. Since research mostly focuses on a
very small and specific topic, a main design aspect is ease of use and that a new system
for a specific research interest can be build from scratch as fast and easy as possible. In
addition, much infrastructure will be built around the core framework to provide support
tools for common tasks.

A method for a ground detection system for visually impaired persons is then build us-
ing above framework. Its prospective purpose is to provide a research base for further
investigation into a mobile navigation system for visually impaired persons. It will con-
tain functionality for ground detection and basic obstacle avoidance. An already existing
library [GRU11] to retrieve stereo disparities, also known as depth-images, is used. These
depth images are the basis of the ground detection system, so its correctness is heavily
dependent on the stereo algorithm quality. The ground detection part of the system uses
a strong correlation between an analyzed region’s gradient and the surface normal of the
world area it represents. Next, a simple search for the accessible section is performed us-
ing the calculated surface normals. This section is then returned by the ground detection
system.

1.3. Outline

Chapter 2 lists and discusses related work. Moreover, chapter 2 provides further motivation
for the created framework and the ground detection system for visually impaired people.
Therefore, it is separated into several sections and subsections, each of which concentrates
on a specific component. It starts with a short summary of some of the already existing
systems that act as navigational aids for visually impaired people. Then it moves onwards
to a discussion of similar frameworks, based in robotics and computer vision. It finishes
with a short summary of some ground plane as well as obstacle detection approaches.

In chapter 3, a high level summary of the created framework is given. Some design issues
as well as the compromises made are discussed in detail. Public and private interfaces
are described, as well as selected base modules. It finishes with a short description of
additional support tools, which have been created to aid the user with various tasks.

The ground detection method is described in chapter 4. A simple, yet effective, feature is
introduced and its motivation explained. Furthermore, the created dataset is described in
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detail. Afterwards the evaluation is discussed. The chapter concludes with a description
of the used criteria and the evaluation results.

Finally, chapter 5 gives a summary of this thesis and discusses potential areas for future
work to further improve usability of the framework as well as robustness of the ground
detection system.
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2. Related Work

This chapter discusses related work of the framework and ground detection. First, naviga-
tional aids for visually impaired people are presented in section 2.1. Then other frameworks
that inspired this work are presented in section 2.2 and differentiated with respect to the
created system. Finally, in section 2.3, several techniques for ground plane or obstacle
detection are discussed.

2.1. Navigational Aids for Visually Impaired People

As argued by Olson and Robinson [OR12], ”Humans often move and rotate faster and
with more complex motions than robots, therefore requiring increased processing speed
and robustness and the use of specialized algorithms.”

There have been attempts to replace the walking stick with digital means. The Guide-
Cane [SUB03], as shown in figure 2.1, replaces the walking stick with a digitally enhanced
counterpart. It is similar to a normal cane, but has a two wheeled base and an array of
distance sensors mounted to it. Obstacles in front of it, perceived close to the ground,
are evaded. This is achieved by breaking the corresponding wheel, which generates an
evasive maneuver by the person pushing it. The user is steered away from the obstacle
in a circular motion until the obstacle is passed. In this regard, it acts similar to a guide
dog. Another method uses sonar sensors and haptic feedback through small vibration units
sewn into the wearer’s garment and provides an unobtrusive and almost invisible way to
signal feedback [CTV05].

To achieve real-time capabilities, some systems rely on the existence of specific markers or
real world characteristics. This can be hard to do with a purely vision based approach due
to hardware restrictions imposed by the mobile platform. For example Coughlan and Man-
duchi [CM09] rely on colored markers installed throughout a building that are detected by
a mobile phone application to help location- and way-finding inside buildings. The idea is
to improve location aware systems where the global positioning system (GPS) is not avail-
able. Furthermore, this system can directly provide location and routing information to
the user. The main disadvantage of this system is that the markers must be provided and
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Figure 2.1.: The GuideCane housing and wheelbase. (Source: [SUB03])

the layout of a site must be known. Also, since its focus is clearly navigation, it does not
consider moving obstacles, such as people. It should therefore be seen as another comple-
mentary aid to already existing techniques (such as the cane). The need for such markers
is alleviated by Chen et al. [CFZ+12]. Here, an inertial measurement unit (IMU) is used
to sample the user’s kinematic data and thus its ego-motion. By combining information
about walking direction, step length and frequency, a position estimation is created on an
a priori known map.

A different approach is to focus on a specific subset of obstacles. Martinez and Ruiz [MR+08]
warn of aerial obstacles such as branches or low hanging street signs. This complements
the walking stick, since those aerial obstacles present a problem that is typically not sensed
with a cane. They use a wearable stereo device and a laptop as show in figure 2.2. A system
to detect staircases by Hoon et al. [HLM12] relies on a trained classifier. Here RANSAC
is used to estimate the ground plane and remove false detections. Lee et al. [LSC12] use
saliency maps and stereo vision to segment obstacles that have a high saliency. Objects
with a similar color or structure to their background are problematic in this case. The
existence of lane markers is depended upon in a system created by Le et al. [LPB12].
Color segmentation and intensity information are used for detection. In a probabilistic
framework, multiple geometric cues are used for verification.

Since relying completely on computer vision might not yet be possible due to hardware
constraints, some work has been done using specialized equipment, especially particular
camera technologies. One of these is a time of flight (TOF) camera, used by Lee et
al. [LSC12]. This specialized camera system already returns a disparity image. The
returned image is segmented by detecting, as well as removing, edges and grouping the
remaining depth layers into obstacles. A similar system [LM11] on the other hand uses
a red-green-blue and depth (RGB-D) camera. This special camera not only returns a
red-green-blue (RGB) image, but also a registered point cloud and thus compensates for
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Figure 2.2.: A wearable stereo device for aerial obstacle detection. It is comprised of a
Bumblebee stereo camera and a laptop. (Source: [MR+08])

the costly depth map calculation.

2.2. Frameworks

As stated by Sullivan, Griswold and Hallen [SGCH01], ”. . .modularity in design creates
value in the form of real options to improve a system by experimenting with new imple-
mentations and substituting any superior ones that are found.” Such modularity cannot
only help to improve a system by replacing its parts, it also divides development efforts
more clearly among several developers, since it encourages a separation of responsibilities.
To support modularity, a constantly growing number of frameworks have been developed,
such as robot operating system (ROS) [QGC+09], Player 2.0 [CMG05], carnegie mellon
navigation toolkit (CARMEN) [MRT03] or the distributed wearable augmented reality
framework (DWARF) [BBK+01].

2.2.1. Robotic Operating System

One of the best known and most widely used frameworks is the robot operating system
(ROS) [QGC+09]. It reuses many parts of other open-source projects such as Player [GVS+01,
GVH03, CMG05], open source computer vision library (OpenCV) [Zel09] and Open-
RAVE [DK08] and is itself free and open-source. It is specifically tailored towards a
robotic scenario and thus includes specific tools suited for this particular task. Its design
considers many problems and trade-offs regarding that setting, such as abstraction and
reliability of services, but also robotic specific functionality like motor control.

The creators use a peer-to-peer protocol as a basis for communication among multiple
entities. These entities can even spread over various computers on a heterogeneous net-
work. Without implying that ROS is slow in any way, while its approach brings many
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advantages, such as possible redundancy, fault tolerance and a distributed load, one can
also argue that it induces a fair amount of overhead. It might be more feasible to assemble
modular parts into a single execution unit and use multithreading to distribute work on a
single machine, while keeping tight control over all contained modules. This could be es-
pecially useful when targeting a mobile platform, since mobile platforms tend to have less
computing power and resources available. Also when moving towards a mobile platform,
multi machine capabilities are most likely to not be needed, so a compact integration to
decrease latency and overhead should be preferable as there is only a single central pro-
cessing unit (CPU) available and no distribution over the network required. Therefore
a monolithic design should be favored, as it reduces the overhead from communication
among entities. To be extensible while still being monolithic, a functional and object
oriented approach can be used, where each module is controlled by a master authority.

While at first a framework that has similar goals to ROS will likely seem redundant, the
differences in design choices made during implementation of these ideas might largely only
be perceived upon intense usage of said systems. The plethora of available tools, options
and settings of ROS can be intimidating and represents an unwanted barrier to entry, so
a smaller framework more suited towards a particular goal can greatly improve learning
speed. This is especially true when for example an assignment is given to lab students. In
such a scenario, using a framework is desired in order to increase productivity by reusing
already available components. Furthermore, collaboration among individual groups is
promoted through the use of a common base. One of the main goals of the created
framework is thus ease of use, especially for students that do not have prior experience
with computer vision systems and programming. Using a fully featured framework like
ROS can be more of a hindrance under such specific circumstances.

2.2.2. Player 2.0

Player 2.0 [CMG05] is a widely adopted framework for robotic scenarios. It is an ad-
vancement of Player [GVS+01, GVH03], which uses transmission control protocol (TCP)
sockets to create a server/client architecture. Besides sockets, Player 2.0 is also using
inter-process communication (IPC) as a means to connect various software modules and
libraries with one another.

Being a robotic framework, Player contains, just like ROS 2.2.1, many parts to control
robot actuators and get information from its sensors. While different kinds of sensors are
often used in a computer vision oriented framework, several capabilities are not needed in
that case, like motor control. Although this server client module brings much flexibility, it
also creates communication overhead that is best avoided when being on a limited platform.

2.2.3. Distributed Augmented Reality Framework

The distributed wearable augmented reality framework (DWARF) [BBK+01] is another
system. Figure 2.3 shows an indoor scenario with a superimposed map of a building. It is a
framework built to simplify the developing process of augmented reality (AR) applications.
Similar to the augmented reality toolkit (ARToolKit) [Kat02] library, DWARF contains
a component to deal with low level hardware issues, such as trackers. Furthermore, the
DWARF framework concentrates on providing a complete world model, a task flow engine
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Figure 2.3.: An example application built with the Distributed Wearable Augmented
Reality Framework. In this application, an indoor map is overlaid in to the
users field of view. (Source: [BBK+01])

and a context aware service access. While DWARF might contain the needed parts to
build an AR application, it is rather oversized for usage in a visually impaired person
context. It seems preferable to decouple low level hardware and software issues from the
framework and provide such capabilities as modules instead.

2.3. Ground Plane and Obstacle Detection

2.3.1. Plane Fitting

Se and Brady [SB02] use a linear relationship between image pixel coordinates and ground
plane disparity. With a combination of a Sobel edge detector and RANSAC [FB81], they
need to repeat the sampling 300 times to achieve a good ground plane estimation. One of
their applications is pose estimation. With the recent availability of IMUs this can be done
more efficient and accurate. They detect obstacles by marking features with disparities
outside of the expected ground plane disparity range. Thus they often cannot discriminate
between ground plane and smaller obstacles, or the lower parts of large obstacles. Fur-
thermore, their ground plane disparity range estimation needs a constant reinitialization
for camera pitch and roll. There is however the benefit of a reliable curb detection ”if the
curb step is sufficiently large” [SB02].

An iteratively reweighted least-squares (IRLS) [HW77] approach is used by Chumerin and
Hulle [CVH08] to estimate a disparity plane. This approach has no additional information
about possible ground plane configurations and can therefore yield undesirable results
when the ground plane is not the dominant planar structure in the scene. In order to
prevent this, a fixed set of nine image points (3x3 lattice) as well as two stabilization points
are used for the calculation. The stabilization points are computed by using knowledge
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(i) (ii)

Figure 2.4.: Close Range Human Detection for Head Mounted Cameras. The left im-
age (i) shows the setup which consists of a Bumblebee camera mounted to
a helmet. In the right image (ii) detections of humans in a pedestrian area
can be seen. (Source: [ML12])

about the camera position inside a moving vehicle. Adding these points to a wearable
and therefore highly versatile platform seems hardly possible. The absence of appearance
models allow this system to deal with a wider range of scenarios, since it does not rely on
specific assumptions about the scene or the existence of for example lane markings. Due
to the usage of only a small subset of the available disparity map, the quality of the ground
plane detection depends greatly on the quality of the disparity map in these exact image
regions. Thus it can lead to incorrectly identified ground planes. An approach that uses
all or even as many as possible points of a disparity map should be insusceptible to such
behavior.

2.3.2. Segmentation

Segmentation techniques for ground plane and obstacle recognition are used by Lom-
bardi [LZM05]. Instead of using two-dimensional segmentation techniques, three-dimensional
segmentation with a disparity map is used. First, road surface candidate pixels are se-
lected by using bottom-up techniques. These candidates then vote for road models from a
predefined set of appearance models. Using the winning model, all road surface candidates
within this model are selected. This represents the top-down part of the algorithm. Fi-
nally, an optional fine boundary segmentation can be included to further refine the detected
road. Obstacle detection can be performed by additional investigation of road disparity
regions that do not fit into the winning model. The appearance models depend heavily
on the camera position with respect to the ground as well as the existence of a narrow or
wide strait (in this case road surface).
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2.3.3. Obstacles

While most of the works from section 2.3 already use a correlation between the presence
of ground plane and obstacles, there also exists an array of work focusing on obstacle
detection. Many of those deal with automobile settings [LAT02, BPCL06]. They use
varying techniques, such as the Hough Transformation [DH72], to detect prominent or
salient objects as well as optical flow [HS81].

A quite different approach is used in an obstacle avoidance system for a rotorcraft un-
manned aerial vehicle (UAV) [Hra08]. Through the use of special equipment, such as
stereo on chip (STOC) technology and an embedded computer, real-time capabilities are
achieved. A sophisticated framework for probabilistic map occupancy is then used to gen-
erate a point cloud representing the surrounding obstacles. This technique is limited by
”the amount of memory (such a map) can require” [Hra08], since it becomes very big for
rather small voxel resolutions. Furthermore, a probabilistic roadmap planning as well as a
stereo-based replanning is calculated using techniques such as A* or, more efficiently, D*
Lite.

A great many works deal with pedestrian detection in urban settings, some even on a
wearable platform [ML12]. Here, depth information is gathered through the use of a
Bumblebee camera, which is attached to a helmet as shown in figure 2.4 (i). Then depth
templates of upper bodies are learned and matched to the disparity image. This works
really well, even for crowded scenes as can be seen in figure 2.4 (ii). In a similar system
stereo camera rigs mounted on wheeled vehicles are used [ELSVG09, ESLVG10]. This
results in a rather steady camera movement with only very few pitch and roll changes. Here
a probabilistic model is used through a Bayesian network, which models the dependency of
person detection, detection size and location, and by using all detections creates a common
ground plane estimation. This model is then updated in each frame, so it can deal with
static as well as moving obstacles.
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Support System

Client BVS ModuleControl

Loader

Logsystem

Config
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Figure 3.1.: An overview of the blind and visually impaired support system (BVS) frame-
work. Additional system parts are shown in appendix A.

This chapter gives an overview of the created framework presented in this thesis. Its main
parts, public and private interfaces, are discussed and some design decisions are explained.
Then, the modules created to aid in computer vision tasks are presented in detail.

3.1. Main Design Goals

The blind and visually impaired support system (BVS) has been created to simplify col-
laborative research efforts towards visually impaired users. It was designed to be fast to
learn and as easy to use as possible with a setup time of less than a few hours. In order to
not impose special demands onto the user, the framework itself is completely free of any
special purpose parts created towards a particular research domain. Such functionality is
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outsourced into modules, so for every use case the decision to include these can be made
upon the specific needs and requirements of a project. Thus the framework itself is kept
as abstract as possible.

One of the reasons to create this framework is to encourage code reuse instead of code
duplication. Often, specific code is written to deal with a certain library, driver or data
conversion. This code is often hard to separate from other aspects of an application since
it will most likely be deeply interwoven with other application parts. Therefore, reuse is
made much harder than it would be in a strictly separated environment. Also, bug fixing
efforts must be duplicated, because a bug found in one application does not translate well
into another application using parts of the same code base. To counter this development,
it has long been proposed and successfully deployed to group functionality into classes,
objects or functions. The notion of modularity represents nothing different, but goes a
step further. With separate objects or classes, there are no specifications about common
data structures or caller formats. On the contrary, within a modular approach, policies
and procedures to share and use data are fundamental attributes. Every module part of
a larger system has to obey these rules. Thus modularity presents a stronger argument
towards reusability, connectivity and interchangeability.

To reduce overhead created by the modular framework, a functional approach has been
taken. Each module consists of an object with a core functionality. This functionality
represents its main contribution, while the rest of the module deals with startup and
shutdown of the module, for example initializing and shutting down hardware systems.
Oftentimes, additional information or functionality is necessary and must be provided
outside the core functionality. By separating support and core functionality, the concept
of a pure function is approached. Modules can be connected, just like functionality would
be chained, in a program to request a certain outcome. Using the framework, this can be
done dynamically. The framework will call their core functionality in the order they have
been specified, while all the side effects of data passing and data conversion have already
been taken care of. The inflicted overhead of the framework can be made negligible by
using a flat calling hierarchy. Eventually, the framework approximates the running costs of
a specifically created application which simply calls several functions, but with the added
advantage of being dynamically changeable, even at runtime.

The framework itself is completely encapsulated inside a library object, also known as
”shared objects” or ”dynamic link libraries” [BWC01]. While this contradicts the common
notion that a library is not a framework, it allows for the creation of a two sided interface,
one for clients that desire to control the framework, the other one for framework modules.
Both interfaces provide the specific parts needed and are described in the following sections.
Since the framework allows for easy creation of additional clients, it is a straightforward
process to include this framework into others.

Documentation is an important step towards creating an easy to use framework. Thus,
the popular Doxygen [vH08] documentation system is used throughout the framework and
its modules. This allows for a comfortable generation of the documentation as well as the
ability to supply pre-generated documentation bundled with the framework library.

The, at the time of this writing, new C++11 standard is used extensively throughout the
framework. It greatly helps with programming several aspects of the framework, especially
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multi threading. Although the multi threading support in C++11 is far from complete, it
supports system portability as well as code simplicity. As a build system, cross-platform
make (CMake) [MH08] is used to simplify the build process of the framework and its mod-
ules. It allows for an easy to use and understandable build structure. Furthermore, each
module can be bundled with its own compiling directives, which separates the process from
the framework as well as other modules. Thus, it alleviates the treatment of dependencies,
even inter-module dependencies. To manage the framework’s source code as well as the
source code of created modules, git [TH05] is used. It allows for a distributed version con-
trol and is used widely in the industry as well as the open source software scene, amongst
others the Linux kernel development. Moreover, git has become another important tool
to promote the sharing of resources with other researchers or research students.

3.2. Public Interfaces

3.2.1. Client Interface

The client interface provides the basic functionality for the entire BVS framework. It allows
for a dynamic change of all existing framework traits at startup as well as any time during
usage. Such traits are for example a logging system, which will be described in detail as
part of the module interface in section 3.2.2. Furthermore, multi-threading and module
pooling can be enabled or disabled. The major reason to allow explicitly the removal
of multi-threading is debugging. In a debugging scenario, it is often preferable to have
all modules running inside a single thread, since not all debugger handle multi-threaded
scenarios rather well. Also, it allows the debugging process to concentrate on issues that
are not related to the nature of simultaneous execution in multi-threaded scenarios. As
such, it cannot help with issues that stem from multi-threaded synchronization issues.

A framework client can, after the creation of a framework instance, load modules indi-
vidually or use the supplied configuration mechanism (section 3.2.4) to load a predefined
number of modules as well as framework settings. This mechanism allows for a fast cre-
ation of systems that can be loaded simply by specifying a configuration file to the client.
Furthermore, it is easy to create for example demo applications using this technique. An
added advantage in such a scenario is that while the number as well as the order of compo-
nents are fixed, individual components benefit from bug fixing and feature improvements.

Of course, the client interface contains methods for the client to start, run, step, pause and
quit the frameworks operation. A step, also referred to as a round, is considered to be a
single execution of all loaded modules. All modules are run synchronized by the framework,
executed in the order they are specified or running in parallel in a highly multi-threaded
scenario. Synchronization is achieved by using a barrier, a synchronization method that
regulates concurrency among a fixed number of threads by enforcing rendezvous points.
So during each round, it is guaranteed that each module of a system will run exactly once.

An asynchronous control mechanism has been considered, but it was found that it is
preferable to leave unused processing power to busy modules, instead of having all modules
constantly poll, therefore actively competing for resources, and thus occupying all available
CPU cores. The major drawback of having all modules run in a synchronized fashion is
overall round time as well as system delay. The overall round time is the time that it
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takes for all modules to finish one round. The system delay, however, is the accumulated
time it takes for information to pass through the entire system, that is the entire chain
of modules from the first to the last one. Thus one slow module, most likely processor or
input/output dependent, can dramatically increase the round time and thereby the overall
system delay. In order to alleviate the effects of such a behavior, statistics such as the
collection of individual module and pool runtimes during each round have been integrated
into the framework to detect such ill manners. A module pooling mechanism has been
integrated to join the execution of other modules into single threads, thus decreasing the
overall round time, see section 3.3.2. Since this mechanism enables multiple modules to be
executed using current round information from their predecessors, the system delay can
be reduced by several round times, depending on how many modules can be bundled into
such a pool.

Given that all modules belong to the same system process, unlike with ROS, passing
data between modules has been implemented by using shared memory instead of message
passing or IPC. This guarantees a low overhead, as connections must only be established
once and is especially advantageous for large amounts of data, such as images. More
information about this mechanism can be found in the section about module connectors,
section 3.2.3.

The framework has been designed to make heavy use of the Pimpl Idiom [Sut09] wherever
possible, which is also known as a ”compilation firewall.” Its purpose is to hide the specifics
of an implementation behind a public interface. This allows programmers to change the
inner workings of a system, without exposing these changes to the outside world. Any
system depending on the framework does not need to be recompiled upon framework
implementation changes, since those are not reflected in the public interface. Therefore,
the usage of the Pimpl Idiom allows for later internal changes of the framework without
affecting already used instances.

As stated above in section 3.1, the purpose of having this client interface is the ability to
encapsulate the framework into a library object. This allows for greater portability as well
as easier integration within other systems. However, this leads to a minor problem, which
is that a framework that needs to be controlled by a client cannot run on itself. That is
why a daemon is provided with the framework. It is presented in the next section.

Daemon

A daemon has been created that serves two purposes. First, it can control the framework
in headless environments, meaning it runs on the command line. Second, it serves as an
example of how to use the client interface. Future work is planned for a graphical client,
which should also serve as a debugging tool.

The daemon starts an interactive shell through which the user interacts with the frame-
work. In addition, this shell can be used to output the systems log. These are not
framework features, but belong to the daemon implementation. Giving the user interac-
tive control to the framework is perhaps the most important aspect of the development
process. Only through this access modules can easily be interchanged at runtime. A
framework client or daemon could also be written to simply run a specific system, which
could be created through the use of the configuration mechanism, or implemented inside
the daemon’s source code.
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Furthermore, the daemon allows to overwrite any kind of configuration option on the
command line. This permits the usage of the daemon inside a fully scripted scenario,
where any property of the system can be changed upon each execution of the framework.
Especially for system and algorithm optimization this represents an invaluable tool.

3.2.2. Module Interface

The second interface is aimed towards the integration of framework modules, it must be
conformed to in order to allow the framework proper integration. To promote a con-
sistent module interface, a helper tool has been created that creates an empty template
for the newly created module. This frame can then be extended to include the desired
functionality.

Such an approach allows for easy, partly automated and, therefore, fast creation of library
wrappers. These wrappers are completely self-contained, they only define their desired
input channels and provided output channels as well. Once the library functionality has
been added to the module, this library can then be reused in many different projects.
Instead of having custom written code each time an external library is used, this process
abstracts the library and wraps it into an easily reusable container.

While modules are controlled completely by the framework, they are still allowed to make
full use of all system resources, for example starting additional threads. Such behavior
should always be considered carefully, since especially in high speed scenarios the additional
overhead caused through the additional synchronization layer is not negligible.

There is however one important ability for modules: they can request a system shutdown
if required. This can happen when for example an input module has no more data to
process or when faulty states are detected inside a module. The framework will then not
immediately shut itself down, but rather keep the system running for a while to give all
other modules that belong to an active system a chance to finish processing their input
and properly shutdown for example hardware components. Additionally, modules can
inform the framework of various module states. One such state could be that a module
is repeatedly not receiving any input. While the framework itself cannot handle such
situations yet, a client could, in an interactive setting, act upon it.

Sometimes it is needed to store various configurations of an algorithm, which is itself
represented as part of the framework through a module. The configuration subsystem,
described in section 3.2.4, allows to store these settings inside a more dynamic environment.
They can be bundled into module configurations, which can then easily be accessed through
the frameworks module configuration syntax, shown in section 3.2.4. This allows for a fast
switch between several already created module configurations.

3.2.3. Module Connectors

Module connectors define the way for a module to acquire input from other modules as
well as send output to others. The connector system has been built to allow for a high
speed message exchange with negligible overhead. Such connections are initialized by
the framework upon startup. Afterwards, a sending entity can put its data into a shared
memory region. This region is automatically announced to the receiving entity. To prevent
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concurrent access, a locking mechanism is included. This ensures the integrity of data in
multi threaded scenarios by excluding race conditions and other synchronization issues.

The framework has been built to be completely agnostic to the type of passed data inside
such connectors. To it, all passed data are just memory regions. The main reason for
this design decision is to keep the framework free from application specific code. This
however, has the disadvantage that each module must check the validity of its input before
processing it further to avoid crashes resulting from incomplete or corrupted data, which
is widely considered a good behavior anyway. On the software side, through the use of
metaprogramming, a connector is type safe, feels and handles just like a native object, so
it is easy to use.

In order to provide at least a bit of support with type checking, the framework can rely
on run-time type information (RTTI) to detect incorrectly setup connectors during the
startup phase. This can be explicitly disabled if desired, since not all compilers might be
able to include such information in the resulting binary. The produced overhead of this
mechanism is negligible, as it only affects the startup time.

3.2.4. Configuration Subsystem

The configuration subsystem, named simply Config, serves an important purpose while
developing a system. It allows for an easy change of system settings and configurations.
With the configuration mechanism, the user can create or change all system aspects,
without having to recompile. Furthermore, having a configuration that can be saved
and passed around to other researchers enables easy sharing of system implementations,
instantiation, algorithm parametrization and their results.

As with any configuration mechanism, it demands a specific syntax to be followed. This
syntax has been kept simple, while still allowing for advanced features, such as array
specifications inside a single line, as shown in figure 3.2. As can be seen in the example,
through the use of metaprogramming, the configuration system converts desired option
values into the demanded formats. Thanks to this mechanism, the user does not have to
take care of any form of configuration parameter conversion. This mechanism can even be
extended to user created types.

In order to separate module configurations from the base framework settings, a sourcing
mechanism has also been included. This allows to distribute a module’s configuration
bundled with the module code, while still enabling an easy integration into an existing
system by simply sourcing its configuration options.

Module Configuration Syntax

To support modules that assemble a broader array of functionality or support different
modus operandi, a special module syntax is used by the framework as shown in figure 3.3.
This syntax helps in the definition of modules using various of its possible capabilities
by allowing to select a module with a certain configuration. Furthermore, by decoupling
the name or identification of a module from its origin, the underlying implementation
of a module instance can easily be switched by another implementation without causing
further problems down the module graph, especially when connecting the module to other
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# eve ry t h in g a f t e r ’#’ i s cons idered a comment
opt ion = ignored # must be long to a s e c t i on

# s e c t i o n s and op t i ons are case i n s e n s i t i v e
[ s e c t i o n ] # same as [ SeCtIoN ]
opt ion1 = value1 # comment
Option1 = value1 # warning , r e d e f i n i t i o n

# spaces are s t r i p p e d i f not i n s i d e quo tes
opt ion2 = ”value2 with spaces ” # s i n g l e quo tes a l s o p o s s i b l e
opt ion3=value
opt ion4 = value
opt ion5 =value

# a l l o f the above are v a l i d e n t r i e s

booleanOption = true
# for boo lean type option−va lue pa i r s :
# ’1 ’ , ’ true ’ , ’True ’ , ’TRUE’ ,
# ’on ’ , ’On’ , ’ON’ ,
# ’ yes ’ , ’Yes ’ or ’YES’
# are i n t e r p r e t e d as TRUE, ev e r y t h in g e l s e as FALSE

s t r i n gL i s t = elementOne , ”element Two” , ’ e lement Three ’
boo l eanL i s t = true , f a l s e , True
# accessed by us ing getValue wi th s t d : : vec tor<TYPE>

# the p lus−equa l opera tor can be used to expand e x i s t i n g op t i ons
# t h i s turns them in to a l i s t , a l l ow ing f o r f a s t e r r eorder ing
l i s t = one
l i s t += two
l i s t += three
#l i s t += four
l i s t += f i v e
# the r e s u l t o f t h i s w i l l be : l i s t = one , two , three , f i v e

# other con f i g f i l e s can be sourced ( inc luded )
source OtherConf igFi l e . txt

Figure 3.2.: Configuration subsystem syntax.
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# modules [+]= [+ | poolName ] id [ ( l i b r a r y [ . c on f i g ] ) ] [ . connec t ions ]
#
# [+] −> Append to the module l i s t .
# [+ | poolName ] −> Load module i n s i d e i t s own poo l ( ’+ ’) or
# add/ cr ea t e to a module poo l o f name ’ poolName ’
# which a l s o runs i n s i d e i t s own thread and execu t e s
# added modules in the g iven order .
# NOTE: ’+ ’ i s e f f e c t i v e l y a shorthand f o r ’ [ i d ] id ’ .
# NOTE: ’ poolName ’ MUST be i n s i d e ’ [ . . . ] ’ , ’+ ’ not .
# [ ( l i b r a r y . . . ) ] −> Use as module l i b r a r y to a c t u a l l y load
# module from , u s e f u l f o r mu l t i p l e modules from a
# s i n g l e l i b r a r y .
# [ . c on f i g ] −> Use t h i s c on f i g u r a t i on f o r the module , u s e f u l so
# the module name does not change but i t s
# con f i g u ra t i on can be changed e a s i l y .
# [ . connec t ions ] −> Options f o r connectors , l o o k s as f o l l o w s :
# input ( t e s t . output ) [ . input2 ( t e s t . output2 ) ] . . .
#
# I f c on f i g u r a t i on and/or l i b r a r y are not given , the system w i l l
# use the g iven id in s t ead ( u s e f u l as a shorthand ) .
#
# Examples :
# < SHORTHAND > < VERBOSE >
# id id ( id . i d )
# id ( l i b ) id ( l i b . i d )
# +id2 ( l i b 2 ) [ id2 ] id2 ( l i b 2 . id2 )
# +id3 ( l i b 2 . conf ) . in ( id2 . out ) [ id3 ] id3 ( l i b 2 . conf ) . in ( id2 . out )
# [ poo l ] id4 . in ( id3 . out ) [ poo l ] id4 ( id4 . id4 ) . in ( id3 . out )

Figure 3.3.: Module configuration syntax.

modules. Without this mechanism, all appearances of the original module identification
would have to be changed as well if an implementation was switched. An example of how
to use the module configuration syntax to create and connect various modules is shown in
figure 4.1.

3.2.5. Logging Subsystem

Having the ability to output any data at any given point during a programs execution
time can be a major factor in diagnosing problems early on. As such, a logging system
should be powerful and easy to use but still lightweight.

In order to simplify the logging mechanism for an user, a logger instance is created, which is
then used to interact with the logging backend. This object contains all the users settings
for its logger instance, such as the instance’s name and verbosity level. Furthermore, it
can be selected, whether the instance should log to a console only or also to a file. The
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0 Errors that are likely to cause system failure.

1 Warning messages to the user that problems occur.

2 Info displays progress information.

3 Debug messages, this level is used to output internal information.

4 Level 4 and above are user defined levels.

Figure 3.4.: An overview of the recommend logging levels.

separation of the log system backend and its interface through logger instances allows a for
a complete modification of the logging system without relying on changes to client code.

Various log levels are supported by the framework, show in figure 3.4. This separation of
logger contents helps with parsing relevant information.

This design approach has been chosen to give the user flexibility when using the logging
subsystem. However, the logging backend reserves itself the ability to override all logger
instances verbosity levels as well as targets. This way a framework client can selectively
parse logging information without being interrupted by dispensable information provided
by other module instances.

To handle highly multi threaded applications correctly, an additional locking mechanism
is used to prevent the output messages from interleaving each other. Also, logging can be
completely disabled at compile time, thus reducing any overhead created by it in the first
place.

3.2.6. System Information

The framework’s information system can be used by modules to acquire various data of the
framework. These informations include for example access to the frameworks configuration
mechanism, so that modules with different configurations can be loaded. Furthermore,
round and statistic information, such as individual module and pool runtimes, can be
acquired. It cannot be used to pass information between modules or to the framework
itself, as there are other methods included to do that.

3.3. Private Interfaces

While so far the focus has been upon the public interfaces for framework clients and
modules, some of the most important private interfaces are discussed in the following.

3.3.1. Loader

Perhaps the most important aspect when creating an extensible framework is the ability
to load extensions. Hence the frameworks loading mechanism has been designed to handle
the operating system specific tasks of integrating precompiled code into the system at
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runtime. The loader abstracts the rather arcane operating system functions to handle
dynamic libraries into an easy to use interface. It handles the loading of dynamic library
objects, the creation of module instances from these and it registers the modules within
the framework. Of course, it also does the opposite operations when closing a module that
is no longer needed. While the integration of modules seems trivial, it strongly depends
upon the used language and its implementation. At the time of writing, C++ did not
have any form of module support. That is why the frameworks relies on old C interfaces
to achieve the same functionality since these are platform specific. Concentrating this
functionality into a single place decreases the overhead needed when porting to a different
platform is desired.

Working with a modular system can bring a lot of benefits, such as the ability to reload a
module because it is either misbehaving, has been corrupted or there is a newer version of
it available. The latter happens especially often during the development cycle of a system.
When reloading a module through traditional means, it loses all internal state information,
unless these were saved inside an external structure beforehand and, therefore, supported
by the module. In order to support a true module reloading experience, a hot swapping
capability has been added to the loading mechanism.

Module Hot Swapping

To substantially decrease the time of a development cycle, a hot swapping mechanism
has been included in the framework. Instead of relying on a module to lose all its internal
state or save said state in an external structure, the occupied memory of a module instance
is reused when recreating the updated module instance. While this technique is neither
desirable nor standard conform, it has proven itself to be reliable. Instead of deleting a
module and thus erasing all of its memory, the module instance is kept in memory while
the old library version is unloaded. Then, a newer version of the library is loaded into the
system and combined with the old instance’s memory. However, this can lead to all sorts
of problems and crashes and should therefore only be used inside a development scenario.
Even then, it has its limitations due to the way objects are laid out in memory. Except
for a hot swapping mechanism that requires special support, there is nothing that can be
done to prevent it. Such an operating procedure is even considered ”undefined behavior”
by the C++ standard [Str93] and should thus be used with caution.

Although the inherent insecurity of this mechanism cannot be eliminated, it has proven
itself really valuable in various development situations. Especially when relying on hard-
ware that has a long warm up and cool down phase - for example some camera systems -
this reduces the iteration cycle by a fair amount of time.

3.3.2. Control

The next important part of a framework is the ability to gain full control over all modules.
In the BVS framework this is implemented in the control system.

The control system supports a messaging mechanism. It can be started as a separate
control process, which runs inside its own thread. That way, a client could offer an in-
teractive shell that connects to the control system and signals the desired actions to the
control system. Furthermore, the control system can be used directly by a client through
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the public interface, but this has the disadvantage that every round needs to be triggered
manually.

A round is considered a full cycle, that is an execution of all involved modules from start
to finish. The round time is limited by the slowest module since all modules run in a
synchronized mode. The reason for this is mainly to not lose any data due to overzealous
modules and to free processing capabilities.

A barrier is used to synchronize the individual modules. Such a barrier is a well known
thread synchronization primitive used in many operating systems. C++ does so far not
include a barrier mechanism, while it has gained a lot of support for multi threading in
its latest incarnation C++11. Furthermore, most barrier implementations only consider
a static barrier, where the number of participants never changes. Since the frameworks
intended use case requires it to be as dynamic as possible, such a static barrier cannot
be used in this context. Thus a custom barrier had to be written that allows for a dy-
namic adjustment of the participating parties, in this case module pool threads. The pool
abstraction is explained in the following section.

Pools

Pools are an abstraction mechanism of the framework to simplify dealing with individual
modules or module groups. A module pool consists of at least one or more modules. If
a pool does not contain any more modules, it takes care of its own proper destruction.
Modules can be added or removed from a pool dynamically, i.e., during runtime, without
affecting other modules, except when disintegrating parts of their input sources.

The major reason to introduce module pools is the ability to group small and fast modules
together. As explained in section 3.2.1, this can significantly reduce the overall system
delay when a single module has a large execution time. Thus a higher throughput can
be achieved, which equals a higher frame rate. While at first, there were different control
structures depending on whether a module was to be run in parallel or not, module pools
greatly simplified the underlying architecture.

3.4. Base Modules

The base framework itself contains no specific low level drivers. To support development
of systems aimed towards visually impaired people, some needed functionality has been
encapsulated inside basic modules. These modules are provided in combination with the
framework and can thus, while they are technically not required to run it, be considered
a part of it. They also serve the purpose of being exemplary to the creation of further
modules.

3.4.1. Capture Module

The capture module has been created to simplify the process of retrieving input from
one camera or if necessary camera arrays. This is a fundamental step in computer vision
applications. OpenCV [Zel09] is relied upon to deal with hardware issues, such as driving
different camera gear and retrieving images over various connection types. The number of
desired cameras, also referred to as nodes, can be set upon startup in a configuration file.
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During usage of the framework it became apparent there would be a need to store captured
data and retrieve it later on. Thus, the capture module has been extended. It can store
individual frames as images or videos as well as retrieve recorded data from these. This
allows for a complete replay of recorded data. Such a mechanism can be used for example
to evaluate algorithms or a dataset.

3.4.2. Calibration Module

When working with a stereo camera system, calibration is an important step and this
module has been conceived as a result. It is designed in such ways that it supports
intrinsic calibration of multiple cameras as well as extrinsic calibration of stereo camera
systems, while it could also be extended to calibrate an entire array of cameras. It serves
as an abstraction layer to the OpenCV [Zel09] calibration methods. It connects to the
capture module to do a live calibration but it can also calibrate a camera from already
saved image series.

To support live calibration, an auto shot mode is integrated into the module. In this mode
the calibration module waits until the calibration pattern can be reliably detected in all
cameras. Then snapshots are taken which are in return used later for further processing.
In order to increase the calibration quality, which is an important step in retrieving good
results from stereo algorithms, a calibration guide has been designed. This optional guide
tries to ensure that pattern detections are evenly spread all over the image in such a way
that the calibration process does not overfit towards a particular region of the image, while
neglecting others.

After a successful calibration, the results can be extracted from a calibration file for further
use and the input images can be extracted from the calibration module in a rectified
condition. Also, after a successful calibration, the results will automatically be reused
during the following executions.

3.4.3. Stereo Vision Module

To test the speed and reliability of a few stereo algorithms, a separate module has been
created. This module uses the graphics processing unit (GPU) and OpenCV [Zel09] to
speedup the stereo reconstruction process. It can dynamically switch between a block
matching algorithm, a belief propagation and a constant space belief propagation. The
module was used in early stages to test the correctness of the capture system, especially
the calibration module.

3.5. Additional Tools

To simplify framework usage, some additional tools have been included. When an user
first downloads the framework, a setup function can be run. This will install the desired
modules that are already known to the framework, but this process can also be expanded
to include repositories of other origins.

Furthermore, an update function is provided. Since the framework supports modules from
varying sources, it can become quite cumbersome to retrieve updates from a lot of different
repositories and keep all in sync. That is why the update function will look for installed
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repositories and update these accordingly. This can even be done without losing local
information. Sometimes it might be necessary to do the opposite of a framework update,
a version rollback. For this case, there also exists a helper function.

Also, to ensure module consistency, a module creation script is included. This has already
been described to some detail in section 3.2.2. All of the above capabilities are integrated
into the main utility script located in the base of the repository.
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After creating the framework a ground detection mechanism has been developed. Sec-
tion 4.1 discusses the design decisions, some of its components and the underlying al-
gorithm. An introduction into the created dataset comes afterwards in section 4.2. In
section 4.3 follows a description of the experimental setup as well as the used measure-
ments. Finally, the results are presented in section 4.4.

4.1. Design

The ground detection system is built using the created framework that is described in
chapter 3. Moreover the supplied modules detailed in section 3.4 are used. These base
modules are used to reduce the effort of building a functional prototype as well as to test
their functionality. Furthermore they provide much of the needed capabilities, such as
input and output of video or image data and calibration of the used stereo camera system.

Since the entire framework is built upon the assumption of a modular system, the actual
ground detection algorithm is encapsulated inside a module. This way it can be easily
used with the created framework and reuse in different applications or usage scenarios is
greatly simplified. Encapsulation of the ground detection system furthermore enables the
use of sophisticated framework support tools. For example the hot swapping mechanism
described in section 3.3.1 helped to reduce the development time of the algorithm by a fair
amount. Due to the modular nature of the framework, changing the input to the ground
detection module is quite simple.

In the following sections, a few parts of the ground detection system will be further ex-
plained. This starts with a general system overview. Afterwards, a short description of
the used stereo reconstruction algorithm follows. It is followed by an explanation of the
algorithm and its main feature, the gradient detection.

4.1.1. System Description

The ground detection system consists of various components, such as the base modules de-
scribed in section 3.4 and the actual ground detection. Furthermore an additional stereo re-
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### INPUT
modules = cap (CaptureCV . video )

### PROCESSING
modules += ca l i b ( CalibrationCV ) . in1 ( cap . out1 ) . in2 ( cap . out2 )
modules += e l a s ( StereoELAS ) . inL ( c a l i b . out1 ) . inR ( c a l i b . out2 )
modules += ground ( GroundDetector . GroundDetector ) . in ( e l a s . outL )

### OUTPUT
modules += vid (CaptureCV . v i d e o wr i t e r ) . in1 ( ground . out1 )

Figure 4.1.: A framework configuration example. Here, a video is being processed and
the calculated ground plane information is saved into another video file.
This example shows the convenience of a modular framework. With a few
configuration lines, a complex system can be realized. It should be noted
that in this example multi threading is not used, but doing so requires only
a simple operation, adding a ’+’ in front of each module instantiation.

construction module has been created to encapsulate the efficient large-scale stereo match-
ing (ELAS) stereo library that yields better results than the OpenCV implementations.

The capture module, discussed in section 3.4.1, is used to read parts of the dataset into
the system. This can be done in a video format, as individual images or from a live camera
system. Then the calibration module from section 3.4.2 uses calibration information to
rectify captured images. The calibration information is obtained beforehand by doing a
calibration whenever the stereo camera system is used. Even marginal alterations within
stereo camera system result in a change of the stereo base and thus render older calibration
information useless. The rectification process is necessary to achieve good stereo recon-
struction results. Without these, the proposed algorithm does not work properly. After
the images are rectified, they are passed on to the stereo reconstruction module.

Since the created base stereo reconstruction module of the framework 3.4.3 does not deliver
well enough results to create a proper ground detection, an additional stereo module has
been created. This module uses the ELAS [GRU11] system that is explained further in
section 4.1.2.

The configuration layout of the system is shown in figure 4.1. More information about the
configuration system and the module syntax can be found in section 3.2.4.

4.1.2. Efficient Large-scale Stereo Matching

As stated in section 4.1.1, the stereo reconstruction module delivered with the framework
does not produce depth information of a sufficient quality. Thus another module has
been created that uses the efficient large-scale stereo matching (ELAS) reconstruction
method [GRU11]. Some results of the ELAS algorithm are shown in figure 4.2.

30



4.1. Design

Figure 4.2.: Results of the ELAS stereo reconstruction on an urban video sequence and
a face image. (Source: [GRU11])

The ELAS system uses a dense reconstruction algorithm that does not require global op-
timization. First, support points are calculated on rectified stereo images using a Sobel
operator. Then a Delaunay [Del34] triangulation is calculated to create a two dimensional
mesh. This mesh improves the disparity search by narrowing the available search space for
each point. By using a local approach supported by a globally computed prior depending
on the Delaunay mesh, even image regions with sparse texture information can be recon-
structed. Final post processing is performed in order to fill small holes and a consistency
check can be done for left and right disparity maps. Although the library’s processing
time is slow for normal sized images, its stereo reconstructions are excellent, even under
quite difficult conditions.

4.1.3. Gradient Calculation

While there already exist quite a few techniques to detect ground plane as discussed in
chapter 2, each of these have a varying degree of dependencies and requirements towards
the observed scene. In order to create a ground plane detection that handles a large degree
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Figure 4.3.: This disparity map mockup shows the relationship of a region’s gradient and
its corresponding surface normal. The obstacle’s gradients are exaggerated
to increase visibility, real life gradients in stereo reconstruction maps are
much more subtle, but can still be detected.

of ego-motion from the used camera system, a rather simple approach that does not rely
on the external setting was chosen.

A direct connection can be made between the local orientation of a segment in the real
world and its representation in the disparity image. Real world points with a greater dis-
tance have a smaller disparity than points that are closer to the camera system. Figure 4.3
displays this relationship.

The gradient of a subsection of the disparity map can be calculated as shown in equa-
tion 4.1.

∇f =
δf

δx
x̂+

δf

δy
ŷ (4.1)

A discrete version of the ∇ operator used in image processing is to use a filter kernel. Such
a filter kernel works on a small image region and is computed for every pixel. The kernels
have to be separated for the ∇X and ∇Y direction and are shown in equations 4.2 and
4.3, where f(X) and f(Y ) represent the region around X and Y of the appropriate size.

∇X =




−1 −1 0 1 1
−1 −1 0 1 1
−1 −1 0 1 1
−1 −1 0 1 1
−1 −1 0 1 1



f(X) (4.2)
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∇Y =




−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
0 0 0 0 0
1 1 1 1 1
1 1 1 1 1



f(Y ) (4.3)

Different kernel sizes yield different results. In this system, a kernel size of 32x32 pixels
has been chosen. This computation would be costly for every image pixel and thus is only
performed block wise. While in this work, only a single kernel size is computed, further
scaling of the kernel should be done in order to account for different input data as well
as computation of the gradient for every image pixel. Furthermore, a quad-tree structure
can be used to concentrate the computational efforts on specific regions of interest.

From∇X and∇Y the orientation of a surface region represented by the processed disparity
map region can be calculated as shown in equation 4.4.

θ = arctan
∇Y

∇X
(4.4)

While this calculation seems to consider only two dimensions, it also works in the three
dimensional case, since we are only interested in real world surfaces that are upright. In
these cases, the calculated value of θ will be close to π/2, or 90◦.

Although the calculation of the surface orientation seems simplistic, it works quite well.
Furthermore, such a simple approach consisting of two filter kernels as well as an orientation
calculation can be computed efficiently and at high frame-rates.

4.1.4. Accessible Section

The accessible section is determined by adhering to geometric constraints imposed by the
real world setting. After determining the complete ground section, the accessible section
of it is the part that can be directly reached from the current camera position without
conflicting with any obstacles. Since the part of the camera image that is closest to the
view point is the bottom image border, the accessible section must be connected to it.

As a criterion the calculated angle is used and a deviation of π/8 is allowed. Thus a simple
upwards search from the bottom towards the top border yields the accessible section by
checking all blocks that fit this criterion. While it was considered to allow the detection
process to ”peek around corners,” it has not been implemented. The detection of the
accessible section for now returns the directly accessible section, that is the part of the
section that can be reached without having to navigate around or behind obstacles.

4.2. The Flower-Box Dataset

In order to test the ground detection system, a video dataset was created. This has been
necessary, since other datasets concerned with ground detection usually focus on road
scenes or people detection inside a pedestrian area. The need to create a new dataset
originates from the earlier made observation that existing systems do not handle intense
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camera movement well. Thus, a dataset has been created where an intense ego-motion
can be observed.

The dataset consists of 20 videos of varying length. These videos cover an array of different
scenes and objects, such as sidewalks or walkways with parked cars or bicycles, a few
pedestrians or cyclists and street poles as well as a few edge cases such as a ladder like
sculpture and a narrow ridge. A complete overview of the dataset is given in table 4.4.
Some key frames of each video can be seen in figures 4.5 and 4.6.

4.2.1. Acquisition

The dataset has been recorded using a hand-held stereo camera rig and a laptop. This
camera system is comprised of two Point Grey Grasshopper 2 cameras mounted onto a
metal carrier at a fixed distance. These cameras can record images at up to 2448x2048
with 15 frames per second or smaller resolutions at higher frame rates. Due to technical
limitations the dataset could not be recorded using the fully available frame rate and
resolution. The used laptop, a MacBook Pro 7.1, possesses only a single FireWire port
to connect to the cameras. Luckily, these can be daisy-chained, which also brings the
added benefit of camera synchronization, especially important in stereo reconstruction
scenarios. Due to these hardware limitations, the dataset has been recorded at a resolution
of 1028x768 pixels and 15 frames per second in 8-bit grey mode.

The videos were recorded within a duration of two hours on a sunny day inside an urban
area. They were not captured in one session and the listed videos of table 4.4 are not sorted
by time, but by content. Altogether, the videos add up to almost nine minutes of video
data. Also, much care has been taken to record the videos under realistic settings. Direct
sunlight, weak lens flares and strong shadows can be seen in the videos. Furthermore
there is much camera movement on all axes to simulate a mobile platform carried by a
pedestrian.

A calibration has been obtained before and after the recording of the dataset to mitigate
the possibility of an unintended change in the relative camera position due to outside
forces. No modification was detected.

In order to improve the stereo reconstruction, several precautionary measures have been
taken. The cameras’ optical axes are aligned to be parallel. Both cameras record in a
synchronized manner through the use of a built-in synchronization mechanism over the
FireWire bus. Also, the cameras gains and exposures are synced to create stereo images
with similar illumination and contrast.

4.2.2. Labeling Process

Together, all videos contain 7789 frames. Every fifth frame has been labeled, that amounts
to three labeled frames per second. Furthermore, the first 30 frames (or two seconds) of
each video were not labeled to account for camera initialization of gain and exposure,
which adds up to a reduction of 100 labeled frames.

To simplify the labeling process, the videos were first converted into their individual frames.
After excluding undesired frames, the remaining were then labeled by hand using a specif-
ically created labeling tool using the matrix laboratory (MATLAB) environment. This
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Name Description #Labels #Frames

Alley Pedestrian walkway with flower-boxes on both sides as
well as some parked bicycles.

61 333

Alley Leveled Like alley, but the camera is approximately leveled to
the horizon.

85 452

Bicycle Bicycle driving up front for a few seconds, a small box
obstacle as well as a lamp post and a slope in the end.

58 315

Car Navigation around a tree, afterwards along a narrow
path between a low hedge and a car.

33 194

Corridor An indoor scene of a long corridor with doors to adja-
cent offices.

98 516

Fence A sidewalk with a low fencing on the left side and
parked cars to the right.

46 257

Flower-box Navigation between low flower-boxes with tall coppice
and some parked cars.

78 417

Hedge A sidewalk with a tall hedge along one side, some poles
at start and end.

93 490

Ladder A ladder like sculpture with wide horizontal beams,
used as an edge case.

32 186

Narrow A narrow sidewalk between parked cars and bicycles
as well as lamp posts.

91 482

Pan Horizontal pan of a parking area with flower-boxes and
parked car.

44 246

Passage Passageway containing some flower-boxes, a few
parked bicycles and a door.

93 490

Railing A railing blocking the path and a post along the side-
walk.

48 266

Ramp A large ramp towards the street with three poles on
the side of the road.

41 233

Ridge A dead end on a narrow walkway between two steep
slopes with a wall at the end.

33 193

Sidewalk A typical sidewalk scene, some parked bicycles and
cars, a person walking towards the camera.

171 884

Sidewalk 2 The continuation of the Sidewalk video, similar situa-
tion, bicycles parked on both sides.

110 578

Sidewalk Leveled Similar situation as in Sidewalk, with the camera lev-
eled at horizon.

121 630

Sign A tall sign at the side of the pavement, used as an
edge case.

22 137

Street A walk on the street between parked cars and a passing
cyclist.

93 490

Figure 4.4.: A list of all Flower-Box dataset videos with a short description of their
content. It consists of 20 videos of varying length, totaling 7789 frames of
which 1451 have been labeled.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

Figure 4.5.: Key frames of (i) Alley, (ii) Alley Leveled, (iii) Bicycle, (iv) Car, (v) Corridor,
(vi) Fence, (vii) Flower-box, (viii) Hedge, (ix) Ladder and (x) Narrow.
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4.2. The Flower-Box Dataset

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

Figure 4.6.: Key frames of (i) Pan, (ii) Passage, (iii) Railing, (iv) Ramp, (v) Ridge, (vi)
Sidewalk, (vii) Sidewalk 2, (viii) Sidewalk Leveled, (ix) Sign and (x) Street.
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4. The Ground Detection System

Ground Truth
pos. neg.

Prediction
pos. TP FP
neg. FN TN

Figure 4.7.: The confusion matrix relating prediction and ground truth. The used ab-
breviations are: true positive (TP), false positive (FP), false negative (FN)
and true negative (TN).

tool marks the desired region of interest with an user specified polygon. The polygon is
then in return used to create a binary mask of the labeled frame.

The label is used to mark the accessible ground section, i.e., the image region that can be
walked upon by a pedestrian. Further constraints have to be added to guarantee that the
labeled section can actually be reached. A valid accessible section has to be connected to
the bottom frame boundary. This ensures that no obstacle can separate the ground section
from the camera operator and the labeled section is accessible from its current position.
Moreover, only the reachable parts of the ground section are labeled, regions that are
disconnected by obstacles such as trees or lamp posts are not directly accessible from the
current view point and should thus not be labeled. A result of the labeling process can be
seen in the evaluation section in figure 4.8(i).

4.3. Evaluation

The performance of the created ground detection system is evaluated by calculating the
receiver operating characteristic (ROC) curve and the precision-recall (PR) curve as well as
aggregated measures in form of the area under the curve (AUC) and Fβ scores. In order to
compute these, the predictions are separated into 4 classes, shown in the confusion matrix
and an example image in figures 4.7 and 4.8.

The ROC measurement illustrates the performance of a binary classifier relative to a
system parameter. To plot the ROC curve, the True Positive Rate (TPR)

TPR =
#true positives

#positives
=

#true positives

#true positives + #false positives
, (4.5)

as well as the False Positive Rate (FPR)

FPR =
#false positives

#negatives
=

#false positives

#false positives + #true negatives
, (4.6)

are measured for representative thresholds. The threshold for the accessible section de-
tection system will be the deviation of a surface normal and its corresponding calculated
angle that is pointed straight upwards.

The recall is the proportion of the predicted positive values which are actual positives.
Here, these are all the image pixels classified by the system as accessible section that are
contained inside the labeled ground truth regions. Thus the recall can be calculated as

recall =
#true positives

#true positives + #false negatives
. (4.7)
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4.3. Evaluation

(i) (ii)

Figure 4.8.: An example of the four prediction classes. The original image (i) with the
accessible section outlined in red. The bottom image (ii) shows the pre-
diction with the individual classes which are the correctly identified section
(true positive) in green, the missed parts (false negatives) in yellow, false
identified parts (false positives) in red and the remainder of the scene (true
negative) in blue.

The precision is the proportion of correct matches relative to the false and correct matches,

precision =
#true positives

#true positives + #false positives
. (4.8)

The Fβ score combines precision and recall into a single value, their individual weights
determined by β,

Fβ = (1 + β2) ·
precision · recall

(β2 · precision) + recall
. (4.9)

When evenly weighted, the F-score becomes the balanced F-measure, also known as the
F1 score,

F1 = 2 ·
precision · recall

precision + recall
. (4.10)

Additionally, in the following F0.5 will be used, as it places a higher importance on precision
than recall. A high precision seems more relevant than a high recall in this application,
since it correlates with a high percentage of correct results with few false positives. This
is especially important when dealing with a system that directly affects a human being,
as it seems preferable to detect all obstacles rather than all of the accessible section.

Finally, the overall accuracy for each video is calculated as

accuracy =
#true positives + #true negatives

#true positives + #true negatives + #false positives + #false negatives
.

(4.11)
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4. The Ground Detection System

4.4. Results

The created accessible section detection achieves varying results depending on circum-
stances like the amount of observable ground plane or its texture. Three good classifica-
tion results can be seen in figure 4.9, one indoor and two outdoor scenes. These three
settings constitute common scenarios for a navigational support system for visually im-
paired persons. The outdoor scenes contain a sidewalk, once narrowed by parked cars and
bicycles and once mainly free of obstacles. In these and similar scenarios, where there is
a great variability in the texture of the observed scene, the classification achieves good
results. This is due to the fact that the stereo reconstruction algorithm provides a stable
and gap-less disparity map which in turn leads to a good classification.

In figure 4.10 three bad classification results can be seen. The system fails these situations
and only a small percentage of the accessible ground section is classified. Either the stereo
reconstruction cannot deliver sufficient information or the classifier cannot deal with the
created noise in the disparity map. Figure 4.11 shows such a case that is part of the
Pan video. Large holes and artefacts as well as strong noise in the disparity map cause
the classification to fail on many image parts. Originally, 36 videos were recorded for
the data set, but almost half had to be discarded due to a poor stereo reconstruction
quality. To further improve the classification method and discern between a failure on the
segmentation part, additional measures have to be taken. This could for example include
the development of a disparity map check of some sort.

Figures 4.12 and 4.13 show the per video averaged ROC and PR curves. Especially for
the Alley, Alley Leveled, Narrow, Sidewalk, Sidewalk 2, Sidewalk Leveled and Street videos
a very high discrimination ratio is achieved, almost always above 90%. These videos have
a fairly large stretch of accessible section with obstacles located on both sides in common
as well as only very few obstructions separating the ground section. Good results are also
achieved on the Car, Corridor, Fence, Hedge, Ladder, Passage and Sign videos. Here,
a variable amount of directly accessible ground section is available and it is often sepa-
rated into several parts. Classification rates are still above 80% and support the initial
assumption that the gradient classifier could deliver good results even under difficult cir-
cumstances. The Bicycle, Flower-box, Pan, Railing and Ramp videos show the algorithm’s
limits. Large parts of the ground section cannot be recognized. The worst detection ac-
curacy is observed in the Ridge video. Much noise is created in the disparity map by the
combination of grass partly covered with snow, which has very low texture information.
Furthermore, this video has by far the smallest amount of visible ground section which
causes the algorithm to detect more false positives in relation to other videos.

An overview of the achieved classification rates for all videos is shown in figure 4.14 as
well as their standard deviation 4.15. The area under the curve (AUC) for ROC and PR
are given as well as various F-scores. F0.5 and F1 scores show that the algorithm has a
high reliability. Also, the small difference between the mean of the maximum and the
fixed threshold F-scores and accuracies show that the selection of a general threshold is
possible.
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(i)

(ii)

(iii)

(iv)

(v)

Figure 4.9.: Three good recognition examples. They are taken from the Corridor, Side-
walk and Narrow videos (from left to right) and show: (i) original frame,
(ii) generated ground truth mask, (iii) accessible ground plane prediction,
(iv) ROC curve and (v) PR curve.
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4. The Ground Detection System

(i)

(ii)

(iii)

(iv)

(v)

Figure 4.10.: Three bad recognition examples. They are taken from the Bicycle, Flower-
box and Pan videos (from left to right) and show: (i) original frame, (ii)
generated ground truth mask, (iii) accessible ground plane prediction, (iv)
ROC curve and (v) PR curve.
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4.4. Results

(i)

(ii)

(iii)

Figure 4.11.: Here a low recognition score is caused by a failing of the stereo reconstruc-
tion algorithm. The images show the open area of a parking space (i), the
problems of the disparity map with large holes and artifacts (ii) and the
failing accessible section detection (iii).
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4. The Ground Detection System

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

Figure 4.12.: ROC and PR curves of (i) Alley, (ii) Alley Leveled, (iii) Bicycle, (iv) Car,
(v) Corridor, (vi) Fence, (vii) Flower-box, (viii) Hedge, (ix) Ladder and (x)
Narrow.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

Figure 4.13.: ROC and PR curves of (i) Pan, (ii) Passage, (iii) Railing, (iv) Ramp, (v)
Ridge, (vi) Sidewalk, (vii) Sidewalk 2, (viii) Sidewalk Leveled, (ix) Sign
and (x) Street.
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4. The Ground Detection System

Name
∫
ROC

∫
PR F̂0.5 F0.5 F̂1 F1

̂Accuracy Accuracy

Alley 0.928 0.882 0.940 0.937 0.919 0.916 0.904 0.901

Alley Leveled 0.892 0.856 0.943 0.941 0.919 0.911 0.867 0.862

Bicycle 0.753 0.629 0.871 0.843 0.882 0.869 0.786 0.676

Car 0.850 0.679 0.774 0.763 0.749 0.739 0.858 0.851

Corridor 0.819 0.665 0.851 0.816 0.799 0.750 0.805 0.796

Fence 0.855 0.750 0.885 0.878 0.843 0.834 0.823 0.815

Flower-box 0.783 0.607 0.848 0.838 0.815 0.789 0.750 0.724

Hedge 0.836 0.827 0.898 0.882 0.901 0.872 0.855 0.814

Ladder 0.836 0.629 0.774 0.757 0.744 0.736 0.878 0.868

Narrow 0.958 0.924 0.927 0.922 0.932 0.928 0.932 0.929

Pan 0.759 0.548 0.848 0.843 0.862 0.861 0.690 0.650

Passage 0.850 0.733 0.898 0.889 0.857 0.821 0.819 0.805

Railing 0.760 0.626 0.868 0.842 0.876 0.852 0.790 0.696

Ramp 0.803 0.680 0.880 0.870 0.879 0.839 0.773 0.731

Ridge 0.854 0.622 0.624 0.230 0.648 0.304 0.750 0.199

Sidewalk 0.929 0.945 0.947 0.943 0.950 0.947 0.919 0.913

Sidewalk 2 0.947 0.914 0.920 0.913 0.920 0.912 0.915 0.904

Sidewalk Leveled 0.889 0.942 0.958 0.954 0.959 0.950 0.923 0.912

Sign 0.890 0.835 0.935 0.933 0.901 0.899 0.859 0.854

Street 0.940 0.885 0.923 0.919 0.910 0.904 0.922 0.917

x̄ 0.852 0.753 0.873 0.861 0.842 0.828 0.837 0.784

Figure 4.14.: Per dataset video results: the area under the curve (AUC) for the ROC
and PR curves, Fβ for β = 0.5 and β = 1 as well as per video accuracy.
The ˆ operator denotes the average of the maximum F0.5 score threshold
over each frame. x̄ shows the average score of the entire dataset.
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Name
∫
ROC

∫
PR F̂0.5 F0.5 F̂1 F1

̂Accuracy Accuracy

Alley 0.0252 0.0518 0.01266 0.0129 0.0271 0.0276 0.0265 0.0281

Alley Leveled 0.0378 0.0596 0.01716 0.0168 0.0300 0.0336 0.0440 0.0447

Bicycle 0.0659 0.0989 0.05984 0.0597 0.0667 0.0906 0.0903 0.0897

Car 0.0525 0.1132 0.09208 0.0932 0.0767 0.0756 0.0523 0.0579

Corridor 0.1013 0.2011 0.09240 0.1176 0.0910 0.1601 0.1018 0.1016

Fence 0.0471 0.0861 0.02208 0.0228 0.0393 0.0467 0.0608 0.0661

Flower-box 0.0686 0.1437 0.06126 0.0697 0.0662 0.0680 0.0752 0.0949

Hedge 0.0829 0.0875 0.05748 0.0521 0.0556 0.0485 0.0665 0.0700

Ladder 0.0503 0.1464 0.13493 0.1377 0.1165 0.1207 0.0408 0.0417

Narrow 0.0168 0.0278 0.01600 0.0168 0.0147 0.0157 0.0190 0.0238

Pan 0.0422 0.0814 0.03054 0.0343 0.0203 0.0201 0.0753 0.0687

Passage 0.0707 0.1405 0.04571 0.0570 0.0523 0.0989 0.0827 0.1024

Railing 0.0621 0.0745 0.09489 0.0753 0.0834 0.1338 0.1143 0.0717

Ramp 0.0705 0.1212 0.04445 0.0421 0.0450 0.0674 0.1012 0.1018

Ridge 0.1766 0.3410 0.33426 0.1767 0.3405 0.2142 0.3590 0.1609

Sidewalk 0.0287 0.0299 0.01605 0.0161 0.0149 0.0175 0.0285 0.0301

Sidewalk 2 0.0278 0.0432 0.02825 0.0293 0.0284 0.0310 0.0298 0.0343

Sidewalk Leveled 0.0602 0.0361 0.01785 0.0190 0.0205 0.0214 0.0349 0.0310

Sign 0.0182 0.0316 0.00861 0.0086 0.0152 0.0175 0.0258 0.0257

Street 0.0283 0.0554 0.02149 0.0219 0.0302 0.0309 0.0257 0.0276

x̄ 0.0567 0.0985 0.0604 0.0540 0.0617 0.0670 0.0727 0.0636

Figure 4.15.: Per dataset video standard deviation: the area under the curve (AUC) for
the ROC and PR curves, Fβ for β = 0.5 and β = 1 as well as per video
accuracy. Theˆoperator denotes the standard deviation of the maximum
F0.5 score threshold over each frame. x̄ shows the standard deviation of
the entire dataset. See also figure 4.14.
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5. Conclusion

The existence of numerous frameworks for various research purposes indicates the need of
a common base to foster collaboration among researchers. However, due to their devel-
opment towards a particular purpose, they often contain many parts that are not needed
in other research areas and may become hard to use in a different scenario. Thus, in this
thesis, a framework aimed towards visually impaired persons has been presented with a fo-
cus on simplicity and ease of use by other research students. The frameworks main design
goals: modularity, versatility, functionality, encapsulation and provision of core compo-
nents have greatly helped in the development process of a walkable area detection system
for visually impaired persons. By reusing already existing framework components, much
development time was saved. Furthermore, the framework could be tested with regard to
its ease of use and flexibility. It can be concluded that the framework justifies its invested
work. Already, a few useful modules have been developed by other student researchers
from the same laboratory.

While there already exist many ground plane detection systems, such systems were usually
developed taking into account several artificially enforced constraints. Conditions such as
knowledge about the exact camera position were used as well as the existence of specific
markers, amongst others. This dependency upon external constraints renders them un-
feasible for visually impaired persons, as these cannot be guaranteed. Thus, a simple and
effective feature has been introduced, the gradient detection inside a disparity map pro-
duced by a stereo reconstruction algorithm. The gradient uses the correlation between the
orientation of a surface in the real world and its representation in the acquired disparity
map. Its calculation is neither complex nor computationally expensive and can thus be
done fast and efficiently. In addition, a simple detector to retrieve the accessible section
was created. This detector relies on a few simple geometric constraints to process the
detected ground region. The simple approach of the ground detection system yields sur-
prisingly effective classifications, but can only be seen as a small step towards a reliable
navigation system for visually impaired persons.

A real world dataset was created to evaluate the developed ground detection system. It
was collected inside an urban area using a hand held stereo camera rig and a laptop.

49



5. Conclusion

The dataset consists of 20 videos with almost 8000 frames in total. The videos cover a
large variety of scenes ranging from simple walkways, sidewalks including parked cars or
bicycles, a few pedestrians, cyclists, street poles and edge cases such as a narrow ridge. Of
these, in 1451 frames the accessible section has been labeled by hand using a specifically
created labeling tool.

The proposed system achieved an overall correct classification rate of 0.784 averaged over
the entire dataset. The accuracy for a fixed threshold varies from 0.199 for an edge case
up to 0.929 for each video.

5.1. Future Work

The existing framework proves to be useful in the development of applications and proto-
types. Through combination of existing modules and the creation of missing pieces existing
applications can easily be extended. Nonetheless, there are features that are still missing.

Probably the most desired feature during the ground detection development using the
provided framework has been the need for an unified graphical user interface (GUI). A
GUI can greatly help with control of the framework, as it would provide an even easier
access to its functionality. An example of this would be the creation of an application by
simple drag and drop operations using a visual representation of the existing modules and
their connections. Such a visualization of the module graph could greatly help in under-
standing the interaction and cooperation between different used modules. By displaying
additional information, such as latency and runtime information, bottlenecks become eas-
ily visible. Furthermore, such a visualization could immensely help with the debugging
process. Through provision of general and abstract view ports of the data inside the
framework connections, problems with features or algorithms become easily accessible.

Since it is not always possible, or simply impractical, to get input from a live system, such as
a camera rig, a data recorder and replay functionality is desirable for the development and
testing phase, as well as for evaluation. By moving such functionality into the framework,
they become abstract facilities that do not depend on specific data types. Thus, their
reuse is encouraged for varying applications that needed an array of different data types.
Furthermore, by providing a deep integration into the frameworks internals, advanced
functionality such as data skip and rewind can be implemented. Such capabilities can, like
the GUI, greatly help in the development process.

In the research community an important tool next to C++ is the matrix laboratory
(MATLAB) computing environment. Much research is done inside MATLAB due to its
great integration of mathematical concepts as well as functionality to plot data and inte-
gration of commonly required algorithms. It has already been used in this thesis to create
the labeling tool. But MATLAB can also interface with other languages, such as C++.
Thus it would be interesting to connect the created framework with MATLAB by creating
bindings for it. This step would allow the early prototyping of modules inside MATLAB
and simplify later integration into the framework.

In order to create a wearable system aimed at navigational support for visually impaired
people, a port to a mobile platform is necessary. Modern smartphones could provide an
ideal target for this. They have greatly gained in processing power as well as available
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5.1. Future Work

memory over the years and also contain high resolution cameras. The Android platform
seems especially suited for this purpose, since it is open source and widely used.

Ways of providing feedback to the user must also be explored. Through haptic interfaces,
such as the Vibrotac [SEWP10] device, guidance information could be passed along. Soni-
fication could also provide such a feedback system, but the feasibility of any approach must
be examined first. Integration of such systems is an important step towards the creation
of usable navigation support systems.

The ground detection system can be further improved by evolving the gradient and the
detection of the accessible system using quadtree like structures and varying gradient
kernel sizes. By processing the disparity map with such improvements, the focus could be
concentrated on regions of interest and thus a finer grained representation of the ground
plane could be acquired. Furthermore, using a three dimensional representation could help
in specifically difficult situations. Various approaches, such as simultaneous localization
and mapping (SLAM) [Dav03], dense tracking and mapping (DTAM) [NLD11] and parallel
tracking and mapping (PTAM) [KM09] already exist, although their feasibility on mobile
platforms remain to be tested due to high complexity and processing requirements.
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Appendix

A. BVS System Overview

BVS::BVS
+ shutdownHandler
- moduleStack
+ BVS()
+ ~BVS()
+ loadModules()
+ loadModule()
+ unloadModules()
+ unloadModule()
+ connectAllModules()
+ connectModule()
+ loadConfigFile()
+ setLogSystemVerbosity()
and 10 more...
- BVS()
- operator=()

BVS::Connector< T >
- connection
- data
+ Connector()
+ Connector()
+ ~Connector()
+ send()
+ receive()
+ operator*()
+ operator->()
+ lockConnection()
+ unlockConnection()
- activate()
- operator=()

BVS::Module

+ Module()
+ ~Module()
+ execute()
+ debugDisplay()
- Module()
- operator=()

Figure A.1.: These are BVS’ main interfaces. On the left, the client interface can be
seen. It is used to control the framework and interact with its parts. In
the middle, the module interface used by the framework to interact with
each module is shown. On the right, the module connector template used
by module connections is displayed.
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BVS::LogSystem
- loggerLevels
- tmpName
- namePadding
- systemVerbosity
- outMutex
- outCLI
- outFile
- instance
+ out()
+ endl()
+ setSystemVerbosity()
+ enableLogFile()
+ disableLogFile()
+ enableLogConsole()
+ disableLogConsole()
+ announce()
+ updateSettings()
+ updateLoggerLevels()
+ connectToLogSystem()
- LogSystem()
- LogSystem()
- operator=()

BVS::NullStream

+ NullStream()

BVS::StreamDup

+ StreamDup()

BVS::BufferDup
- out
- copy
+ BufferDup()
# overflow()
# sync()
- BufferDup()
- operator=()

Figure A.2.: This is the logging system backend together with its helper classes.
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A. BVS System Overview

BVS::ConnectorData
+ id
+ type
+ active
+ pointer
+ typeIDHash
+ typeIDName
+ mutex
+ lock
+ locked
+ ConnectorData()
+ ConnectorData()
+ operator=()

BVS::Control
+ modules
- activePools
- pools
- flag
- masterLock
- controlThread
- round
- shutdownRequested
- shutdownRound
+ Control()
+ masterController()
+ sendCommand()
+ queryActiveFlag()
+ startModule()
+ stopModule()
+ waitUntilInactive()
+ isActive()
- moduleController()
- poolController()
- checkModuleStatus()
- Control()
- operator=()

BVS::Loader
+ modules
- errorHandler
- hotSwapGraveYard
+ Loader()
+ load()
+ unload()
+ connectAllModules()
+ connectModule()
+ disconnectModule()
+ loadLibrary()
+ unloadLibrary()
+ registerModule()
- checkModuleInput()
- checkModuleOutput()
- printModuleConnectors()
- Loader()
- operator=()

BVS::ModuleData
+ id
+ library
+ configuration
+ options
+ module
+ dlib
+ poolName
+ flag
+ status
+ connectors
+ ModuleData()
+ ModuleData()
+ operator=()

BVS::PoolData
+ poolName
+ flag
+ thread
+ modules
+ PoolData()
+ ~PoolData()

BVS::Config
+ name
- mutex
- optionStore
- sections
- fileStack
+ Config()
+ loadConfigFile()
+ dumpOptionStore()
+ getValue()
+ getValue()
+ getValue()
- loadCommandLine()
- error()
- searchOption()
- convertStringTo()
- convertStringTo()
- convertStringTo()
- convertStringTo()

BVS::Info
+ version
+ round
+ lastRoundDuration
+ moduleDurations
+ poolDurations
+ getFPS()

BVS::Logger
+ name
+ verbosity
+ target
+ Logger()
+ out()
+ endl()
- Logger()
- operator=()

BVS::Barrier
- mutex
- cv
- parties
- queued
+ Barrier()
+ attachParty()
+ detachParty()
+ enqueue()
+ enqueue()
+ notify()

Figure A.3.: Here the relationship between the loading mechanism and the control sys-
tem is shown. Both share access to commonly used data and control struc-
tures as well as internal framework interfaces.
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