

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People

Daniel Koester, Maximilian Awiszus, Rainer Stiefelhagen

INSTITUTE FOR ANTHROPOMATICS AND ROBOTICS — COMPUTER VISION FOR HUMAN COMPUTER INTERACTION

Motivation

2

27.10.17

"Please turn right in 200 meters!" "You have reached your destination!"

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

State of the Art

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

State of the Art: Reality

27.10.17

4

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

Routing: Directions

- 0) "Please turn north until you reach a façade."
- 1) *"Follow the façade to the left for 8m."*
- 2) "Continue for 18m at 1 o'clock to cross a driveway."
- 10) *"Turn right and follow the façade for 6m."*
- 11) "Continue for 6m at 10 o'clock across the sidewalk."
- 12) "You have reached your destination."

5 24.10.17

Routing: Graph Transformation

Transform Directed Graph to Edge Expanded Graph:

6 24.10.17

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

Routing: Algorithm Overview

1: $d := \{0, \infty, \dots, \infty\}$ 2: prev := $\{0, -1, \dots, -1\}$ 3: $q := \{(p_{r=0}, 0)\}$ 4: while $q \neq \emptyset$ do $p_u := q.\operatorname{pop}()$ 5: for all $l_i \in (\mathcal{S}'_{\mathcal{R}} \cup \mathcal{R})$ do 6: $p_{v} := f_{near}(p_{u}, l_{i})$ 7: if $d[u] + \delta_{p_u p_v l_I} < d[v]$ then 8: $d[v] := d[u] + \delta_{p_u p_v l_u}$ <u>9</u>: $\operatorname{prev}[v] := u$ 10: $q.\operatorname{push}(p_v, d[v])$ 11:end if $12 \cdot$ end for 13:14: end while

7

24.10.17

Routing: Cost Function

8

20.10.17

$$\delta_{p_u p_v l_I} := \begin{cases} \mathcal{W}_S \cdot \|p_u - p_v\|_2, & (\delta_{p_u l_I} = 0) \land (l_i \in \mathcal{S}) \\ \mathcal{W}_R(l_i) \cdot \|p_u - p_v\|_2, & (\delta_{p_u l_I} = 0) \land (l_i \in \mathcal{R}) \\ \delta_{p_u l_I}, & otherwise \end{cases}$$

$$\mathcal{W}_{R}(l_{i}) := \begin{cases} \mathcal{W}_{C}, & informalCrossing(l_{i}) \\ \mathcal{W}_{PS} \cdot \mathcal{W}_{R}, & PedestrianSignal(l_{i}) \\ \mathcal{W}_{APS} \cdot \mathcal{W}_{R}, & APS(l_{i}) \\ \mathcal{W}_{APS_{p}} \cdot \mathcal{W}_{R}, & PilotTone(l_{i}) \\ \mathcal{W}_{R}, & otherwise \end{cases}$$

$$\delta_{p_u l_I} := (1 + |\mathcal{C}_{p_u p_v}| \cdot \mathcal{W}_R) \cdot d(p_u, l_i)$$

 $\mathcal{W}_C > \mathcal{W}_{PS} > \mathcal{W}_{APS} > \mathcal{W}_{APS_p} > \mathcal{W}_R > \mathcal{W}_S > 1$

Routing: Example Intersection

9 20.10.17

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

Evaluation: Random Routes

distance (\overline{d}) , % pedestrian walkway (\overline{r}_w) , # pedestrian signal (\overline{ps}) , % real/virtual shorelines $(\overline{s}_r/\overline{s}_v)$ and # informal crossings (\overline{c})

	$ar{d}$	\bar{r}	- w	\bar{ps}	\overline{c}	
R_{OSRM}	458	8 12	2.8	.157	.064	
$R_{Walkway}$	466	3 1 6	5. 4	.669	.128	
R_{APS}	464	4 1 6	3.4 .	792	.063	
	\overline{d}	\bar{r}_w	\overline{s}_r	${ar s}_v$	\overline{c}	
$R_{Shorelines}$	139	00.0	24.5	12.3	0.056	
R_{Final}	162	17.6	20.9	11.0	0.043	

10 25.10.17

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

Evaluation: Public Transit Station Based

distance (\overline{d}) , % pedestrian walkway (\overline{r}_w) , # pedestrian signal (\overline{ps}) , haptic/aural/pilot-tone APS $(\overline{ps}_a/\overline{ps}_p)$, % real/virtual shorelines $(\overline{s}_r/\overline{s}_v)$ and # informal crossings (\overline{c})

		\overline{d}	\overline{r}_w	$p\bar{s}$	\bar{ps}_a	ŗ	\overline{os}_p	\overline{c}
Rose	RM	621	26,4	2.327	0.205	5 0.	019	0.702
R_{Wal}	kway	654	$46,\!4$	4.819	0.338	8 0.	070	1.501
R_{APS}	5	655	$45,\!5$	4.709	0.320) 0.	814	0.615
			$ar{d}$	$ar{r}_w$	\overline{s}_r	\overline{s}_v	\overline{c}	
	R_{Shc}	orelines	178	00.0	31.4	7.9	.056	<u>;</u>
	R_{fin}	al	198	22.0	26.0	8.2	.03	5

11 27.10.17

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

Evaluation: Public Transit Station Based

12 26.10.17

Mind the Gap: Virtual Shorelines for Blind and Partially Sighted People Daniel Koester, Maximilan Awiszus, Rainer Stiefelhagen

Evaluation: Wizard of Oz

- No access to GNSS receiver with sufficient position accuracy.
- Two 400m long routes in unknown locations.
- Closely following supervisor interactively reads generated directions.
- More a "sanity check" than a real evaluation!
- Results:
- much appreciated: next shoreline's location and length
- helps in creation of a mental map
- Iong virtual shorelines: lighthouse mode / pilot-tone
- suggested: output should be highly configurable (verbosity level, direction announcement type, ...)

Conclusion and Future Work

- We propose a **novel routing system** on a shoreline level of detail.
- We use openly available geolocation data.
- The system considers actual white-cane based movement.
- The algorithm creates safer routes according to pre-defined criteria: avoid informal crossings, prefer accessible pedestrian signals and integrate available shorelines wherever possible.
- Our system improves users' understanding of the upcoming route, the environment lying ahead and its impediments.

Upcoming:

- Work on visual egocentric shoreline detection.
- Proper user study as part of the TERRAIN project (also provide shoreline level routing as a local/remote service).