

Accessible Section Detection for Visual Guidance

Daniel Koester, Boris Schauerte, Rainer Stiefelhagen

Institute for Anthropomatics Computer Vision for Human-Computer Interaction Lab

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Introduction

"Seeing Guide Cane" by ETH Zürich

Südostschweiz.ch

Navigation and exploration
Urban areas, indoor, outdoor
Autonomy and mobility
Obstacles and hazards

2 07/15/2013

Daniel Koester daniel.koester@kit.edu

Related Work

Martinez et. al., 2008

Bumblebee
 Detects aerial obstacles, i.e., low hanging branches

Shoval et. al., 2003

- Sonar sensors
- Replaces analog white cane
- Breaks wheels to guide around obstacles

Mitzel et. al., 2012

- Bumblebee
- Focus on Pedestrian detection
- Depth map template matching

3 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Approach Overview

- Many obstacles classes
- Stereo cameras for depth information
- Creation of disparity map
- Calculation of surface angles
- Accessible section
- Inside modular framework

4 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Accessible Section Detection Orthonormal Projection

In Euclidean space ($E = \{x_i, y_i, \delta_i\}$), points p, q, r span a plane

- Rearrange and build orthonormal basis $B = \{p,q,r\}$ in projection plane
- B is then equivalent to Gradient $\{\delta x, \delta y\}$

Accessible Section Detection Depth-Based Surface Angle Estimation

Disparity *D* of (x_i, y_i) to calculate depth (baseline *b*, focal length f_{focal}) and resulting map Δ :

$$D = \frac{f_{focal} * b}{x_{i_{\text{left}}} - x_{i_{\text{right}}}}$$

$$\Delta = \{(x_i, y_i, \delta_i)\}$$

6 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Accessible Section Detection Block-Wise Selection Process

- Block-wise calculation
- Fixed kernel size(s)
- Process in vertical bands
- Start from lower image border for each band
- Collect (upwards) all blocks that fit criteria

7 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Accessible Section Detection Block-Wise Selection Process

- Block-wise calculation
- Fixed kernel size(s)
- Process in vertical bands
- Start from lower image border for each band
- Collect (upwards) all blocks that fit criteria

7 07/15/2013 Da

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Accessible Section Detection Example

Labeled accessible section and recognition classes: true positive (TP), false positive (FP), false negative (FN), true negative (TN)

8 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Accessible Section Detection BVS - Blind and Visually impaired Support system

- Modular design, small and easy to use
- Open source: <u>https://github.com/nilsonholger/bvs</u> (...-modules)
- Please feel free to use or contribute
- Work in Progress: Android client

9 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Experimental Evaluation Data Set

Data set (20 videos) to evaluate system

- Challenges: intense ego motion, lighting variations
- Common urban scenes: walkways and side-walks, floors, static and moving obstacles

10 07/15/2013 Daniel Koester

daniel.koester@kit.edu

Accessible Section Detection for Visual Guidance

Experimental Evaluation Measures

When evenly weighted, the F-Score becomes the balanced F-measure or F₁-score, we also use F_{0.5} (precision > recall)

11 07/15/2013

Daniel Koester daniel.koester@kit.edu

Accessible Section Detection for Visual Guidance

Experimental Evaluation Overall Precision-Recall and ROC

Accessible Section Detection for Visual Guidance

MAP4VIP@ICME2013

3FPS with labeled ground truth

True Positive True Negative False Positive False Negative

13 07/15/2013 Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Conclusion

- Efficient method to determine accessible section
- Derive section not blocked by obstacles
- Navigational aid using a mobile platform
- System that helps in everyday situations
- Investigate haptic or auditory output modalities

14 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Experimental Evaluation Results Overview

Name	∫ROC	∫PR	$F_{0.5}$	F_1	Acc.
Alley	0.928	0.882	0.937	0.916	0.901
Alley L.	0.892	0.856	0.941	0.911	0.862
Bicycle	0.753	0.629	0.843	0.869	0.676
Car	0.850	0.679	0.763	0.739	0.851
Corridor	0.819	0.665	0.816	0.750	0.796
Fence	0.855	0.750	0.878	0.834	0.815
Flower-box	0.783	0.607	0.838	0.789	0.724
Hedge	0.836	0.827	0.882	0.872	0.814
Ladder	0.836	0.629	0.757	0.736	0.868
Narrow	0.958	0.924	0.922	0.928	0.929
Pan	0.759	0.548	0.843	0.861	0.650
Passage	0.850	0.733	0.889	0.821	0.805
Railing	0.760	0.626	0.842	0.852	0.696
Ramp	0.803	0.680	0.870	0.839	0.731
Ridge	0.854	0.622	0.230	0.304	0.199
Sidewalk	0.929	0.945	0.943	0.947	0.913
Sidewalk 2	0.947	0.914	0.913	0.912	0.904
Sidewalk L.	0.889	0.942	0.954	0.950	0.912
Sign	0.890	0.835	0.933	0.899	0.854
Street	0.940	0.885	0.919	0.904	0.917
\bar{x}	0.852	0.753	0.861	0.828	0.784

15 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Experimental Evaluation Accuracy

16 07/15/2013

Daniel Koester daniel.koester@kit.edu Accessible Section Detection for Visual Guidance

Experimental Evaluation F_β-Scores

